q/ye.340

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

AREPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2s. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Rcleasc:
Distribution Unlimited,

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4, PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

BRMC-85-5096-111

6a. NAME OF PERFORMING ORGANIZATION j5b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(1 applicable)

D, Blosser & Associatcs Air Force Business Rescarch Hgt. Center
6c. ADDHESS‘(CH)'. State and ZIP Code) 7b. ADDRESS (Clty, State and ZIP Code)
»
. D . »
e e e AFDRUC/ROCB
S AaN Gy Wright-Patterson AFB, OH 45433-6583
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I applicabdle) )
AFBRIC RDCB F33615-85-C-5096
Bc. ADDRESS (City, State and ZIP Code) . 10. SOURCE OF FUNDING NOS.
: PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO, NO. NO.
13. TITLE (Include Sccu.n'ly Cluuiﬁcu'lion) (Unclassil’icd) = 71113 . O 013 0
In=Plant Technical Assistance for Software
12. PERSONAL AUTHOR(S)
D, Blosser
TYPE OF REFORAT 136 TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT
Final FROMAS 0930 79 84 0919 86 Q9 29 114

16 SUPFLEMENTARY NOTATION

| -
17, COSATI R:'DEIEE 18. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number)
FIELD GROUR | SU8. GA. Contract Administration, software, quality assurance,
b d 7 . :

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

*
Contract Administration

ABSTRACT: Differences in hardware and software contract administration were doc-
umented, Technical functions rcquired are identified and recommendations for
logical partition between the AFPRO and SPO focal points are made. Training of
personnel in software contract administration is identified as well as policy changes
nceded to perform these recommended functions are
i

o o Ly
¢ 2

idcntified. | Snn b

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION, =

cLASSIFIED/UNLIMITED (XXX AME As AeT. (O oT1c Users [ Unclassified
NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
(Include Area Code)
Capt D. Smith (513)_255- £22] RDCR
0D FORM 1473, 83 APR EOITION OF 1 JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

CRGE  gae. (s S

-




FINAL REPORT

IN-PLANT TECHNICAIL, ASSISTANCE
FOR

SOFTWARE CONTRACT ADMINISTRATION

F33615-85-C-5096

86 OCT 29

AFBRMC/RDCB

Area B, Bldg. 125, Room 2063

ATTN: Captain Dennis W. Smith
Wright-Patterson AFB, OH 45433-6503

Contractor: Dennis Blosser & Associates
301 Princeton Drive SE
Albuquerque, NM 87106
(505) 268-3538
Attn: Dr. Dennis F. Blosser



TABLE OF CONTENTS

EXECUTIVE SUMMARY

General Differences in Hardware and Software

1. Early Involvement and Early Error
Correction . . .
2. Early and Intense Attent1on to Test1nq

Life-Cycle Differences

Training and Selection of Software Specialists
Nondeliverable Software

Technical Tasks in Software Acquisition
Relation of Tasks to SPO and CAS

CAS Personnel Skills

Policy Recommendations

Ancillary Recommendations

1.0 GENERAL DIFFERENCES IN HARDWARE AND SOFTWARE

35
4.

5

.0

0
0

.0

1.1 1Introduction

1.2 Method

1.3 Hardware vs. Software -- Nine Important
Differences.

Physical Ex1stence

Physical Dimensions

Measurability .

Standard E]ements .

Life-Cycle Re1at1onsh1ps

Design Precision

Cost of Design Correct1on

Quality Assurance .

Comprehensive Testing

bk bd fmd ok fond ook fod fnd o
QW W W wwww
WOONO UL WHRN -

LIFE-CYCLE DIFFERENCES

TRAINING AND SELECTION OF SOFTWARE SPECIALISTS

NONDELIVERABLE SOFTWARE

TECHNICAL TASKS IN SOFTWARE ACQUISITION
5.1 Introduction and Backqround J
5.2 Identification of the Tasks

Xii

Xiii

XV i

XV i




TABLE OF CONTENTS

6.0 RELATION OF TASKS TO SPO AND CAS

7.0 CAS PERSONNEL SKILLS

8.0 RECOMMENDATIONS REGARDING POLICY

9.0 ANCILLARY RECOMMENDATIONS

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

Page

70

96
107
109
R-1
A-1
B-1
CEal
DN



Dennis Blosser & Associates
Final Report
Page i

EXECUTIVE SUMMARY

One purpose of the study was to document the
differences in the development of hardware and software for
USAF weapons systems. A further purpose was to document the
functions presently being performed by the buying activity
(SPO) and by contract administration services (CAS)
personnel in software acquisition. Another purpose of the
study was to document the technical functions which should
be performed by SPO and CAS for more effective management of
software acquisition. A final purpose of the study was to
document personnel skills (for CAS) and policy changes
needed to support the recommended technical functions.

(For convenient reference, the headings of this summary

are identical to the chapter headings of the full text.)

General Differences Hardware and Software

An increasing amount of the dollar and manpower
expenditure for weapons system development is going into
software. The following figure shows the dramatic shift for

development personnel over two decades.




Dennis Blosser & Associates
Final Report
Page ii

100 x
noncomputer hardware
i 80
@
c
[
S
")
@
-
€
o 60
5 X
-
=]
®
>
D
a
S L
k- 40 embedded software
°
o
a
I
20

emibedded computer hardware

19

g Tis
©
3

1980

FI1G.ONE

GROWTH IN SOFTWARE

PERSONNEL
(Glaseman,1982)

Currently, control aspects of weapons systems are
coming to be dominated by computer software and the
appropriate methods and approaches for the acquisition of
weapons system software bear subtle and critical differences
from parallel methods for hardware.

Although the engineering principles applicable to
software and hardware are similar, the tremendous
differences in the essential nature of the two products
requires that the methods for applying these principles be

different. Since these differences and organizational



Dennis Blosser & Associates
Final Report
Page iii

tendencies to deal with them less effectively than desired
form the basis for this study, the differences are discussed
in the text in some detail. Table One shows the nine areas
of software versus hardware similarities and differences

which are discussed.

NINE AREAS OF DIFFERENCE
IN SOFTWARE AND HARDWARE

(Overview)

Physical Existence o Cost of Design Correction
Physical Dimensions o Quality Assurance
Measurability o Comprehensive Testing
Standard Elements

Life-Cycle Relationships

Design Precision

© © 6 o0 0 o

TABLE ONE

The text includes suggested applications in each of
these nine areas for the management of software acquisition.
However, two recommendations based on these differences are

especially clear and potent:

a6 Early Involvemeht and Early Error Correction

In spite of any theoretical positions or current
management philosophies, the orientation of DOD to
quality assurance is understandably hardware-dominated,

and as such, places its greatest manpower effort in the .




Dennis Blosser & Associates
Final Report
Page 1v
quality evaluation of end products. In the case of
hardware, this is probably a good strategy. In pre-
production and production development, the government
definitely participates, but puts the large burden of
technological manpower on the contractor. But, in the
final phase of quality assurance, the government
greatly steps up its participation to assure the final
end-product, before it is accepted.
This orientation is inapproﬁriate for software.
The most critical activities in software take place in
the design and testing phases. Not only is this in

contrast to hardware orientation, but the production

phase for software may even be considered virtually

nonexistent. This is not to say that the production of

copies of software is trivial. Reproduction of tapes,
disks, etc., can be expensive and time consuming and
must be quality assured like other production
processes.

In place of a significant production phase for
software, there is instead the software maintenance
phase. This is far from being a phase where
corrections to software might be made on a cost-
effective basis, thus taking a marginally functional
system and '"tweaking it up" at reasonable cost.
Instead, the maintenance phase for software has been

repeatedly shown to be (Fairley, 1985):



b e e

Dennis Blosser & Associates
Final Report
Page v
(a) the most costly phase of the software life
cycle, and,
(b) the life-cycle phase in which any given error
costs the most to correct. X
For an illustration of the cost of correcting

errors at different points in the Life-Cycle, note the

following figure.

Phase when error 8
is detected S c
= [ =
=
=
]
E
.-—'-'-'_F
‘\_
1000 o
(=]
= 5
[' %
o @ E
[ m
- O =
g & g
0 g 100~ a B
w S = v
> a
P ¢ o ]
: Q =
& g IE 1]
- o
@ wl E %
i/
10~ 3 .//
w
g
a .-/
?
L]
1

FIG. TWO

ECONOMY OF EARLY ERROR
CORRECTION
(Martin,1985)

e




Dennis Blosser & Associates
Final Report
Page vi

Early and Intense Attention to Testing.

In hardware systems, testing can usually be nearly
exhaustive, if desired. Certainly, there are trade-
offs and not all testing may be desireable relative to
some other cost factors, but testing of components and:
complete systems is generally within option. The case
of software is quite different. 1In the case of
computer programs that are large enough to be
significant (and the programs involved with weapons
systems are very large), their complexity is so great
that even automated testing by intelligent computer
programs cannot permit exhaustive testing. The
following diagram illustrates dramatically how the
complexity of a conceptually fairly simple module
quickly leads to impossible requirements for exhaustive

testing.

15
iterations

FIG, THREE
OVER 206 TRILLION UNIQUE PATHS

-



B S

Dennis Blosser & Associates
Final Report
Page vii

The capability for the program to be effective in
the test phases must be laid down and assured from
the earliest design phases. Thus, not only is it
cost effective to correct problems in the design
phase, when feasible, but it is also necessary to
assure the quality of testability from the
earliest design phases. Otherwise, the test phase
can be explosive in terms of cost, schedule, and

morale (Evans, 1984).

Life-Cycle Differences

The main differences between software and hardware in
contract administration can best be viewed in terms of the
weapons system life cycle (WSLC) and the software
development cycle (SDC). The overall WSLC consists of four
sequential and essentially discrete phases:

* Concept Exploration
* Demonstration and Validation
* Full-Scale Development

* Production and Deployment

Within the phases of the WSLC, hardware and software
have development life cycles which are somewhat comparable.

(NOTE: THE PHASES ARE SIMILAR IN FUNCTION AND HAVE SIMILAR




Dennis Blosser & Associates
Final Report

Page viii

NAMES, BUT THEY OPERATE VERY DIFFERENTLY WITHIN THE WSLC.

See table, following.)

SQEIMUﬂﬂiQEMEUMﬂﬂEMI HARDWARE DEVELOPMENT

CYCLE CYCLE
1. System/Software 1. System/Hardware
Requirements Analysis Requirements Analysis
2. Soltware Requirements 2. Hardware Requirements
Analysis Analysis
3. Preliminary Design 3. Preliminary Design

4. Detailed Design 4. Detailed Design
5. Coding, Unit Test and 5. Fabrication

Computer Software
Component Integration

Testing
. /
6. Computer Software 6. Hardware Configuration
Confliguration Item Testing Item Testing

TABLE TWO

The terms used here are self-explanatory and the
. sequences are intuitively meaningful, as well as the
parallels in software and hardware (some kind of parallelism
should be present, since they develop aé linked subsystems
of a parent system). But here is one of the most critical
. differences for contract administration: phases of the

hardware develobment cycle are expected to proceed in a



linear fashion with virtually no overlap -- by contrast, the

phases of the software development cycle are expected a

priori to:

(It should be noted that both the hardware development
cycle and the software development cycle are likely to

appear in somewhat modified forms, as is appropriate, in the

* Overlap one another significantly

* Proceed nonsequentially with an
indeterminate number of loops between
successive phases (this implies possible
paths from phase 6.0 clear back to phase
1.0).

* Overspan the phases of the WSLC (the
hardware cycle is expected to be
finished complete within a given phase

Dennis Blosser & Associates
Final Report
Page ix

of the WSLC).

first two phases.)

The following figure attempts to illustrate the

complexity of these relationships.

hardware cycle

1=—22 =3 e 5 —§

weapon system

life cycle

!

/

/

Concept
Exploratiop

Demonstration and
Validation

Full Scale
Development

Production and
Deployment

g

| S

W o i e

3 —dmg —5

software cycle

FIG. FOUR

COMPLEXITY OF SOFTWARE

DEVELOPMENT CYCLE

\

/

;s

\ J/I
L4




Dennis Blosser & Associates
Final Report
Page x

Training and Selection of Software Specialists

Personnel designated as software focal point usually
have some, but typically minimal or somewhat irrelevant,
training and background in software. Although the software
focal point is not necessarily supposed to be highly
competent in software, this person is typically looked to in
their organization for leadership and technical competence
in software problems. NOTE: There appears to be
considerable difference of opinion on‘this from AFSC,
HQ/AFCMD, and AFPRO viewpoints. If they are indeed to
fulfill these expectations, they should be provided with:

* Development of their leadership
abilities through training

* Development of their leadership roles
* Technical training (for them)
* Technical training (their support for

their colleagues)

It is clear that training and personnel development
needs for software duties are strong throughout the contract
administration organization. Hardly anyone is expressing
competence to do this job. The few who have strong

competence know there is much more than they can do.

Nondeliverable Software

When nondeliverable software is used in the development
and production of weapon systems, we have to ask the

question:



Dennis Blosser & Associates
Final Report
Page xi

* What are the consequences if
nondeliverable software does not
function properly?

Obviously, the consequences could range from trivial to
very serious both in terms of cost and safety.

This leads to the conclusion that, even though some
support software is nondeliverable, it still requires
careful management and surveillance from both contractors
and the government. Currently, there is little attention
being paid to the various aspects of management of
nondeliverable software. Notably, one approach to the
management of nondeliverable software did surface with some
consistency. This is a report by Major George Trevor which
surveys the concerns of nondeliverable software and offers
some guidelines. A draft version of this report is included
in the Appendix.

It is hypothesized that the lack of attention to

nondeliverable software comes from four sources:

(1) The very heavy and specific focus on
deliverable software,

(2) Existence of clear~cut standards and
procedures for deliverable software that are
lacking for nondeliverables,

(3) Assumption that if it is nondeliverable, its
development cannot be important enough to
warrant management effort,

(4) Assumption that if the nondeliverable
software is obtained from the government or a
commercial source, it has to be 0.K.




Dennis Blosser & Associlates
Final Report
Page xii

Technical Tasks in Software Acquisition

What technical tasks must the System Program Office
(SPO) and in-plant Contract Administration Service (CAS)
organizations perform in the acquisition of mission critical
computer resources (MCCR) software?

Tasks in software acquisition were selected on the
basis of these criteria:

(1) Task should represent an appreciable volume of

work to be done, usually by more than one

individual.

(2) Task should represent a process rather than an
event.

(3) Task should be software dominated.

(4) Task should, as much as possible, represent a
description of "what is to be done" rather than
"how to," or criteria, or policy.

A total of 89 technical tasks were identified and are
displayed in detail in Table Three of the text. While Table
Three is intended to be comprehensive, there are some
restrictions which must be made in this sense. First, there
is the problem of diversity. Although one criterion in
selecting tasks for this analysis was concreteness, this
criterion itself (though useful) mitigates against
comprehensiveness. Software applications in embedded
systems are so diverse that any given project may have a
great deal of uniqueness in its software. For this reason,
the only way to cover all possibilities is to present tasks

that are extremely generic or abstract. Hopefully, a useful

middle ground has been achieved here.



Dennis Blosser & Associates
Final Report
Page x1iii

However, any given application may certainly require
tasks not represented here.

The second problem for comprehensiveness involves the
problems of the extent of the effects of software. With
increasing applications of computers and complexity of
software, it is difficult to delimit the extent of the
effects of software. The selection of tasks for this study

implies a delimitation of the systemic influences of

software. It is noted that this is sensible but arbitrary.

Relation of Tasks to SPO and CAS

The separation of responsibilities for technical tasks
(shown in Table Five of the text) between SPO and CAS
contains a great deal of information. However, the general
implications of this separation can be characterized as
reflecting:

(1) An increased amount of required consultation of
the CAS by the SPO than is currently reflected in
written policy and/or practice. This is
especially true in the areas of pre-award survey
and RFP development. Interviews conducted in the
study indicate that under current practice,
valuable knowledge developed by CAS agencies
through their long-term relationships with day-to-
day contractor activities is under utilized and

wasted in these areas. If followed, the




. Dennis Blosser & Associates

Final Report
Page x1v
- recommendations of Table Five should alleviate
this situation, which should not be allowed to
continue in the critical, costly, and problem-
ridden area of software acquisition.

(2) More compulsory participation of CAS personnel in
formal reviews during the development process. As
specified here, required CAS participation would
begin with the System Design Review (Table Three,
number 66). Such early involvement is necessary
in order for CAS personnel to do their jobs
effectively through the later stages of the

. software development process. Also, CAS
familiarity with day-to-day problems of software
development offers the potential to predict and
prevent potential problems earlier in the
development process. This offers the possibility
of great dollar and time/schedule savings to the

government.

CAS Personnel Skills

The tasks identified in this study suggest the
designation of three main areas of training/knowledge for
CAS personnel:

(1) A core area, referred to as Software Development

. Management Evaluation. This area is introductory,



Dennis Blosser & Associates
Final Report
Page xv

foundational, and basic, and recommended for all
affected CAS personnel.

(2) An area specific to Engineering, referred to as
Software Development Technical Engineering
Evaluation.

(3) An area specific to Quality Assurance, referred to

as Software Quality Assurance Evaluation.

More specific areas for each main heading above are
outlined in the text.

A specific recommendation is made that further
development of training proceed in the direction of
establishing systems of training objectives similar to the
system of KSAs (Knowledges, Skills, and Abilities) currently
used by Quality Assurance. Such systems of specific
training objectives should lend to more effective and more
cost-effective training, in addition to other benefits.

Further needed increases in manpower acquisition for
CAS software support, estimated by the Electronics Institute
of America, average 14% per year for the next three years.
Currently, the effects of Gramm-Rudman have not seriously
eroded numbers of software CAS personnel. However, given
that there was already a shortage of well-trained software
personnel and a needed increase of 14% per year, it is clear

that holding the status quo amounts to losing ground.




Dennis Blosser & Associates
Final Report
Page xvi
Polic ecommendations
The task-relations specified in Table Five are
designated as recommendations for policy, and it is
recommended that policy should be altered to enforce the
relationships of Table Five. This contractor is aware that
many of the relationships shown in Table Five already exist
in written policy as "suggested," "where appropriate" (or
similar phrases) or are even required. However, interviews
conducted in this study show that in spite of guidance or
requirements of written policy, in practice, there is
insufficient involvement of CAS capabilities in the
development of RFPs and contracts and too little early
involvement of CAS personnel in formal reviews and audits to
fully utilize and support their potential. Therefore,
policy should be rewritten to require and enforce CAS
involvement as shown in Table Five and discussed in Chapter

6.0 and 8.0 of this report.

Ancillary Recommendations

Based on informal observations and considerations, two
additional recommendations are offered.

The first involves a "services-marketing" approach for
CAS. This is based on the idea of not relying soiely on the
rearrangement and enforcement of policy to attain increased
involvement for CAS in preaward activities and greater early

contract involvement. The idea is to package these CAS



Dennis Blosser & Associates .
Final Report
Page xvii

services in terms of benefits to the SPOs and aggressively
and persuasively market then.

The second involves streamlining of training. This
could be done by establishing an entry or core course for
all CAS personnel (horizontal and vertical) involved with
software. More advanced and specific training could then be
placed in a dynamic data base which could be continuously
expanded and updated. This data base could be accessed on
an ad 1ib basis by individuals and groups. This would
provide highly tailored and individualized training at low

dollar and time cost.




Dennis Blosser & Associates
Final Report
Page 1

1.0 GENERAL DIFFERENCES IN HARDWARE AND SOFTWARE

1.1 Introduction.

Historically, weapons systems have been dominated by
hardware orientations. Until very recent times, weapons
were essentially hardware systems operated entirely by
humans. Although the weapons themselves could be adjusted,
these adjustments were determined and carried out (mostly)
by fairly direct human judgment and action. With the advent
of computers in weapons systems, many adaptive procedures
and criteria could be programmed into systems via software
which extended and removed (in time and space) the effects
of human operators in many cases. This essentially amounts
to turning over a certain amount of control of a weapons
system to computer software.

For historical reasons, hardware-oriented methods and
approaches to weapons system acquisition predominate.
Currently, control aspects of these systems is coming to be
dominated by software, and the appropriate methods of
approaches for the acquisition of weapons system software
bear subtle and critical differences from parallel methods
for hardware. A reflection of the increasing amount of
software involvement in one organization is shown in Figure

One. (The directness of the relationship between



Percent of Development Personnel

100¢

80P

60

40

20

Dennis Blosser & Assoclates
Final Report
Page 2

noncomputer hardware

embedded software

embedded computer hardware

o]

-0 »

T ! T !
1960 1970 1980

FIG. ONE

GROWTH IN SOFTWARE

PERSONNEL
(Glaseman,1982)




Dennis Blosser & Associates
Final Report
Page 3

percentage of personnel and amount of software produced is
clearly an open question.)

Chapters 1.0 through 4.0 cover the preliminary phase
(Phase II) of an investigation into the differences in
hardware and software for contract administration, how these
differences impact contract administration technical
functions, training, needs and staffing needs, and
implications for administration of nondeliverable computer
software. The observations of these chapters serve the
purpose of laying groundwork for more definitive

observations in Chapter 5.0 through 9.0.

1.2 Method
Investigation for the preliminary part of the study

consisted of document study and interviews. Its general
goal was to give the contractor first-hand contact with some
of the agencies involved in order to provide a realistic
foundation for issues to be examined more formally in the
final portion of the study. In addition to the examination
of documents such as:

* DOD-STD-2167

* MIL-S-52779A

* MIL-STD-1679

* DOD-STD-2168 (May 9, 1985, draft version)

* AFCMD Regulation 800-3

* AFSCR 800-42



Dennis Blosser & Associates
Final Report
Page 4
* AFCMD PAMPHLET 800-2
* AFCMDR 74-1
* DOD-STD-480A
and other government guides, etc., the contractor examined
Statements of Work and Requests for Proposals. The
contractor also gained valuable information and guidance
from on-site meetings with personnel at the following
agencies:
* AFCMD/HQ Kirtland AFB, NM
* SD/SPV Space Division, Los Angeles, CA

* AFPRO/Martin-Marrietta, Denver, CO

The observations begin with a general discussion of
differences in software and hardware. The subtle
similarities and differences in the engineering of software
and hardware must be clearly differentiated. Insistence on
detailing these differences does not imply that either
government technical assistance personnel or DOD contractors
are ignorant of them. More sophisticated members of these
groups are well aware of these differences, and less
sophisticated members no doubt easily recognize these
differences when they are pointed out. Nevertheless, these
differences are worth noting, because in one form or
another, they continue repeatedly to be the underlying
causes of the unique and serious problems that arise in the

development of large software projects. Also, although




Dennis Blosser & Associates
Final Report
Page 5
differences in hardware and software are often elsewhere
referred to by implication or in a passing manner, they are
seldom dealt with directly or in detail. Failure to make
these differences distinct has already contributed to a
great deal of confusion in the development of software. The
confusion will be compounded unless these distinctions are
clearly highlighted.

Following the discussion of the differences in software
and hardware, the critical differences for contract
administration in life cycle are discussed. This is
followed by possible implications for staffing and
organization and a brief discussion of implications for

nondeliverable software.

1.3 Hardware vs. Software -- Nine Important Differences.

Many of the differences between hardware and software

that are outlined and discussed here may seem obvious to
those with a good deal of experience in these matters.
Still, these differences are worth discussing for several
reasons: -

(1) Although many who work for the government in MCCR
software are quite sophisticated, many others are
definitely not so sophisticated,

(2) Although the differences discussed here may have
been noted by others, they are usually given

partial, limited, or elliptical treatment,



Dennis Blosser & Associates
Final Report
Page 6
(3) Currently, neither government nor the commercial
sector engineers and manages the development of
MCCR software with satisfactory effectiveness.
Virtually all of the critical problems of software
development arise from or are profoundly affected
by the basic differences between hardware and
software (Fox, 1982). Thus, until we can say we
have significantly controlled the problems of
software development, it is worthwhile to continue
to consciously re-examine these matters both for
the sophisticated and the not-so-sophisticated.

MCCR software is part of an engineered weapons system.
As such, this software itself must be engineered and
correspond to the life-cycle development process of weapons
systems. The application of life-cycle concepts and
engineering principles to software marked a great advance in
the history of computer applications. However, there
appears to be a strong organizational tendency to exert a
hardware-engineering mind-set when applying engineering
principles to software. This mind-set overlooks the
profound differences between hardware and software.

Although the engineering principles applicable to
software and hardware are similar, the tremendous
differences in the essential nature of the two products
require; that the methods for applying these principles be

different. Since these differences and organizational




Dennis Blosser & Associates
Final Report
Page 7

tendencies to deal with them less effectively than desired
form the basis for this study, the differences are discussed
here in some detail. Table One shows the nine areas of

software versus hardware similarities and differences which

will be discussed.



Dennis Blosser & Associates
Final Report
Page 9
1.3.1 hysica =) ce. Hardware has physical
existence. It consists of matter and takes up space.
Software, by contrast, does not enjoy physical existence in
that sense. The nonphysical existence of software is
sometimes termed "virtual" as opposed to physical.
Similarly, sometimes software is referred to as information
or data consisting of instructions for a computer. Often,
we casually speak of a computer program (software) as an
object. However, the closest software comes to being an
object is actually a representation of that software in some
medium (e.g. print, magnetic disk). These may seem like
fine distinctions, but they are legitimate, and they turn
out to be crucial. Most, if not all, of the problems unique
to developing MCCR software arise from its nonphysical
property. Consider any traditional field of engineering.
Consider the various fundamentals of measurement,
observation, modeling, testing, etc., in that field of
engineering. Consider how those fundamentals could (or
could not) be applied to a component that is invisible,

intangible, and has no physical existence.



Dennis Blosser & Associates
Final Report
Page 10

*

* k k Kk Kk k Kk K K ok ok k * Kk Kk *k * * * Kk * * *

A cat ote for In-plant Technica
Assistance: Observation of the software as
it develops (at the module level, say) is
always indirect. This means AFPRO personnel
may be looking at code, or being given an
electronic representation, or looking at
plans, or specifications, or test results.
Making a useful choice among these and inter-
preting them requires different knowledge and
criteria than would be applicable for compar-
able observations of hardware development.
Without adequate orientation and training,
AFPRO personnel may feel that software doesn't*
give them anything to "get a handle on" and *

thus avoid software duties when possible. *
ok ok ok ok ok k ok k k ok k d k Kk Kk k k k Kk k k Kk &

* ok ok K k¥ * ¥ ¥ * F * *

L B R B N CEE B NS CEE R R

1.3.2 Physical Dimensjons. Hardware has physical
dimensions, the simplest being those such as length, width,
mass. Since software lacks physical existence, its
dimensions, similarly, are less concrete. The tangible
physical dimensions of hardware form the basis for some very
realistic guidelines and limits in the design and
development of systems. For example, if a system component
is proposed to a mechanical engineer which requires a large
number (say 500,000) of moving parts, he will probably
quickly reject its feasibility. It is too large in number
of moving parts -- it just wouldn't work. However, the size
of software systems seems to be limited only by computers
with memories large enough to execute them and the
imagination of designers. Because of concrete physical
dimensionality, a too-large hardware system becomes

obviously untrustworthy at a relatively small level.




Dennis Blosser & Associates
Final Report
Page 11

Lacking physical dimensionality, there is no clear, simple
guide in software as to how big is too big, as long as we
think we understand it and have a big enough computer to run
it. [Not too long ago, we would have thought that physical
and memory size of computers would soon provide clear-cut
limits for size of software systems, but current trends are
just the opposite. Vastly more and more computer (hardware)
power available at less and less cost in dollars, time,
space, and weight is pushing software in the direction of
larger and larger systems.] Some attempts are underway at
developing a software "physics," but these are at a very
early and tentative level, and their results are not
available or appropriate for immediate engineering
applications. In all likelihood, developments in these
areas will proceed slowly due to their academic and

theoretical nature.

* k k k k k k k k k k k *k k k Kk * Kk Kk * *k *k *%

Application Note for In-plant Technical
Assistance: About the only practical control
AFPRO personnel can exert on size (and thus
complexity) in software in MCCR applications
is at the module level. The trend is clearly
toward larger and larger software systems.
So, the best control for size is to keep mod-
ules to a size limit. A common rule of thumb
is that a module should be less than 100 linesx*
of code on the average and should not exceed *
200 lines of code at the extreme. A better *
approach would be to design modules that ex- *
hibit loose coupling (i.e., relative independ-*
ence) to other modules and that exhibit inter-*
nal cohesiveness or high internal relation- *
ships and then post-apply the numeric rules of*
thumb as contraints. In any case, the appro- *
priate control point for AFPRO surveillance is*

the Unit Development Folder/Module level. *
¥ % %k %k %k %k *k %k *k %k * %k k %k Kk %k * k k k k * %k *

* % * * * ¥ * * *

& A K K % % % % % % ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥



Dennis Blosser & Associates
Final Report
Page 12

1.3.3 Measurability. Due to its physical dimensionality,
hardware is directly measurable. This is not to say that
direct measurements are the only useful measurements for
hardware. However, if it weren't for the feasibility of
precise, reproducible measurements, we could never have
produced hardware whose functions would be interesting to
measure. Indeed, it has often been argued that measurement
is the fundamental basis of science and the fundamental
basis of engineering.

Software, having no physical dimensions, offers
difficulties for the proposition of measurement. Consider,

for instance, the simple question "How large is Program A?"

A very simple answer would be to state how long Program A is
in lines of code. But this leaves open questions such as:
Is the code assembly language, or a high-order language?
Which high-order language? Are all programs with the same
number of lines of code in the same language truly of equal
size [No.]? And so on.

These measurement difficulties, in turn, pose
difficulties for AFPRO personnel in just about all areas of
contract management regarding software. Evaluation of the
propriéty of software analysis, software design, and
software implementation methods is made more difficult by
the measurement problem. Progress in relation to cost and

schedule expectations is difficult to evaluate. The various




Dennis Blosser & Associates
Final Report
Page 13
factors constituting final product quality in software are
difficult to evaluate.

The measurement of software is being studied
intensively, and developments are occurring at a rapid pace.
However, there are as yet no thoroughly quantifiable and
satisfactory answers to many of the basic needs of AFPROsS in
the area of measurement. At the conceptual level, good
clarifications have been made of some of the basic factors
which are desireable to measure in software. However, these
factors are functional (e.g. understandability, testability)
and as yet very few can be quantified to any degree, if at
all. As more and more satisfactorily quantifiable measures
of software become available, software engineering will
benefit greatly and mature. This will lead to better
contractor capability and an increase in the ability of
AFPROs to perform critical surveillance. It should be
clear, however, that even with such maturation, the basic
differences between software and hardware will make the
methods of measurement different, although the principle of

measurement spans both areas.



Final Report

Dennis Blosser & Associates .
Page 14

% ok d ok K ok ke A K ok ok ok ke b Kk Kk k * Kk K k * %

Application Note for In-plant Technical
Assistance: Currently, AFPRO personnel could

conceivably choose among metrics which are
numerically quantifiable and metrics which are*
conceptual, but not numerically quantifiable #*
(or in some cases numeric, but questionable to*
interpret). There are metrics for software *
development process, metrics for software *
development output, and some which are not *
clear cut. There are also measures available *
which are useful management indicators which *
are not technically software metrics. The *
best pay-off is to identify the decisions *
critical for MCCR contract management (and at *
what state in the development process) and *
then search for a combination of measures (in-*
dicators and/or metrics) which are affordable *
to collect and compute and which can be use- *
fully interpreted, possibly, in combination. =*
AFPRO personnel should be aware that metrics *
and indicators with low collection/computation*
cost and high interpretation/decision value * .

* ¥ ¥ ¥

may not exist for all desireable situations. =*
d* ok b k K dk K k Kk k Kk % % K k Kk % % Kk * % % Kk %

* ¥ k% kN N NN NN NFEFEFEFEEEN

1.3.4 Standard Elements. Many of the elements of hardware
engineering are highly standardized. Their make-up and
functions are transportable with high reliability and
accuracy, and much is known about their behaviors and
limits. Furthermore, this standardization spans a very wide
scope. For example, it can include single, elementary units
of electronic components, such as transistors, that are
extremely small and separate, up to complex electro-
mechanical devices whose operation is considered a fully
standardized procedure under proper conditions of

calibration and usage.




Dennis Blosser & Associates
Final Report
Page 15
By comparison, the current state of standardization for
software is almost the opposite (this is in no way meant to
demean efforts such as STARS and Ada, but to émphasize a
situation that remains seriously problematic in spite of
those admirable efforts). There are many different major
languages used in MCCR by DOD, and even many of these
languages have different dialects and versions which differ
depending on the hardware system they utilize (and there are
very many different hardware systems). Some studies have
counted the number of languages and variants utilized within
DOD to run literally into the hundreds. It seems hard to
believe, but counts notwithstanding, there is a definite and
pernicious proliferation of languages in MCCR software.
Grady Booch (1983) has enumerated several of the costs
linked to proliferation of languages in the DOD such as:
dilution of effects of training, almost no technology
transfer among projects, and a general diffusion of
resources. A number of studies of the proliferation of
computer languages in DOD-embedded systems pointed to the
desirability of a 'single standard language and the issuance
of Directives 5000.29 and 5000.31 which served to narrow the
range of acceptable languages.
Nevertheless, the effects of these studies, the advent
of Ada, and directives do not as yet appear to have deeply

affected contractor software development practices.



Dennis Blosser & Associates
Final Report
Page 16
The result of this is that relatively few standard
elements or systems of software exist. Even the fundamental
elemental statements of a computer language (e.g., FORTRAN)
may not execute identically in different, but functionally
similar environments. While this lack of standardization
may not represent an intrinsic property of software as
contrasted to hardware, it is currently and will continue to

be, influenced by the peculiar nature of software.

1.3.5 Life-Cycle Relationships. Hardware engineering and

the engineering of modern weapon systems gave rise to the
Life-Cycle concept of weapons development. The Life-Cycle
concept has provided great advantages in the successful
development of systems, the management of resources
throughout the Life-Cycle, assurance of conformation to
standards, and other desireable achievements. The Life-
Cycle concept initially evolved around systems that were not
at all computerized. So, the mind-set associated with the
Life-Cycle originated in, and has a long history of, purely
hardware orientation. When computers began to be introduced
into weapons systems, there was certainly not much initial
motivation to view the situation as being different in any
important sense. Although computers were novel, and their
functions were novel, computers are hardware. There was

already a well-established history of experience with




Dennis Blosser & Associates
Final Report
Page 17

complex electronic hardware, and the computer, as hardware,

fit quite well into that mind-set.

Also, and this is the most critical point, the early

computers were small (operating capacity) and weak.
Correspondingly, the software which controlled those
computers was small and easily managed. It seemed quite
appropriate under those circumstances to continue with the
hardware Life-Cycle concept for the system, including the
computer hardware, and simply require fhe software as a data
item on contracts, much like documentation for operation of
the computer hardware. For that time, that thinking was
quite appropriate. It would still be appropriate except
that some sweeping and profound changes have occurred.

In the brief thirty or so years that have elapsed since
digital computers first began to be integrated into weapons
systems, their functions have increased tremendously in two
important ways. First, computers have come to operate in a
greater and greater diversity of roles. Early on, computers
were used in only a few, isolated applications in weapons
systems. Now, computer applications in weapons systems have
multiplied to the point of seeming to be everywhere. As an
example, in early applications, a very large weapon system
such as a bomber aircraft might have one or two on-board
computers to assist in such things as sighting for bomb-
drops or navigation. Currently, a smaller system, such as a

fighter aircraft, has multiple on-board computers that



Dennis Blosser & Associates
Final Report
Page 18

control many functions of the aircraft much like a
biological nervous system. There are computers to manage
the aiming and firing of various weapons on board, and some
weapons (e.g., missiles) are under articulated computer
guidance after firing. (Even this description greatly
simplifies and understates the involvement of computers in
this example.)

The second important change that is linked to increased
diversity is increasingly complex function. The almost
unbelievable advances in microminiaturization of computer
circuitry have supported more different applications by
providing more computer power (complexity of function) per
dollar and per unit of weight and space than was dreamed of
thirty years ago.

Given the peculiar nature of software and the problems
of engineering software as outlined here, the results for
scientific and/or engineering development of software have
been virtually disastrous. Obviously, the function of
computers in weapons systems is to control or assist in
control of a system or its components. But, and this is
critical, the computers themselves are in turn controlled by
software. So here is the crisis: while the potential for
control in weapons systems through advances in computer
hardware has grown like a super-exponential, the realization

of that potential is severely hindered, jeopardized, and




Dennis Blosser & Associates

Final Report

Page 19

made expensive by a definite lack of similar advancements in
the software required to control the computers.

When it first became clear (circa 1968) that software
development was getting out of control to the point that the
idea of "engineering" software began to emerge, the Life-
Cycle concept began to be applied to software. Like the
other concepts discussed here, in principle, this is
appropriate and valuable. Problems arise, however, if a
hardware mind-set is maintained in applying the Life-Cycle
principle to software. This is like the case of the other
issues discussed here. The principles are the same, but due
to the basic differences in hardware and software, the
applications must be different in order to effective.

The Life-Cycle concept as a principle applies
fruitfully to software. Problems arise when, in the context
of a hardware weapons system, the subtle differences in the
meaning of the concept of Life-Cycle for software, and
specifically how the software Life-Cycle is integrated into
the overall weapons system Life-Cycle, are neglected.

A detailing of how some of these problems can arise in
DOD contract administration appears in Section 2.2.

However, it is likely that the implications of Life-Cycle
differences in hardware and software are likely to be
neglected where:

(1) The history of the organization is heavily
grounded in hardware systems.



Dennis Blosser & Associates
Final Report
Page 20

(2) The organization's concepts of Life-Cycle
originated in hardware and has a long history
where hardware orientation predominates.

(3) Few of the organization's front-line workers have
extensive, formal training in software, but do
have extensive training/experience with hardware.

(4) Practices of hiring, promotion, retention, and
compensation mitigate against rapid adjustment to
new technology.

Obviously, an organization that meets the above requirements
is DOD.

This is not to say that there have not been definite
and appropriate attempts made to provide DOD workers with
conceptual and legal tools to work with software. Simply,
given the organizational nature of DOD, the historical DOD
hardware mind-set, the problems facing the software industry
in general, and the infant nature of software as compared to

the demands of hardware potential, efforts have fallen

short.

1.3.6 Design Precision. Creativity and perhaps even some
degree of artistry are no doubt valuable abilities in any
design undertaking. But, the orientation of the hardware
system design is to always provide as rational and
quantifiable a means as possible for evaluating different
alternatives of design. Of course, not even in hardware can
all design decisions be suitably or profitably quantified.
But, the limitations for quantitative evaluation of designs

in software is much more limited than in hardware. These




Dennis Blosser & Associates
Final Report
Page 21
limitations go back to the non-physical nature of software
and current problems of software measurement. There are
definitely methodologies available in software design. And,
they offer definite rationales and advantages. However,
software designs are ultimately like very precise verbal
statements. Hardware designs, on the other hand, are like
very precise descriptions of objects, measurements, and
actions. One way of comparison is to consider the use of
diagrams in hardware vs. software. Design diagrams in
" hardware ultimately are a way of creating iméges
representing physical objects. Design diagrams in software
are a way of creating images which represent data, or
information, or commands--non-physical entities. In final
‘;nalysis, design of software is more abstract than the
design of hardware. As an abstraction, it lends itself to
more possible instantiations than does a design for
hardware. Thus, it is essentially less precise. Some
writers (e.g., Martin, 1985; Hoare, 1975) have argued that
the practice of software design and development lacks so
much precision in areas such as cost control, reliability,
and control of complexity that it scarcely dares to be
associated with the term "engineering" as it is commonly

understood.

1.3.7 Cost of Design Correction. In many hardware

components, minor, sometimes even relatively major, design



Dennis Blosser & Associates
Final Report
Page 22

alterations can be reasonably allowed during production.
Thus, a component may meet minimal acceptance standards and
yet receive profitable alteration at a later phase. 1In
other words, some changes in hardware design exhibit
beneficial cost-effectiveness well after the design phase.

By contrast, alterations in software systems, even
apparently minor ones, after the design phase become
tremendously expensive. So expensive, in fact, that a rule
of dollar and time economy is to make as many required
changes as can be anticipated before leaving the design
phase. Thus, relative to hardware, the design phase should
be intensive and highly test-oriented. The primary reason
for these differences has to do with the quality of
modularity. Most components of hardware systems are highly
functionally encapsulated. They affect each other only
through clearly specified and controlled interfaces.
Currently, the components of a software system seldom
exhibit strong modularity. That is, they link to other
components not only via their designed interfaces, but often
through unintentional and/or unpredictable links to other
components. Unwanted effects going from one software
component to another in this fashion are called side
effects.

Thus, when highly modular hardware components are
redesigned during post-design phases, their system-wide

effects are highly predictable. In the case of software,




Dennis Blosser & Associates
Final Report
Page 23

this predictability does not hold. Due to weak modularity,
redesign of a software system component in post-design phase
may have wide ranging side effects which will then require
affected components to need redesign, which may in turn have
wide ranging side effects, which will require redesign of
other components, etc. The problem of modularity is well
noted but by no means conquered. At present, the best
solutions appear to be to anticipate and solve as many
problems as possible and to try to buila in modularity in

the design stage -- easy to state, difficult to accomplish.

* * * Kk k* k Kk k k k * k k k k k *k k * k k*k *k k %k *k
* Application Note for In-plant Technical *
* Assistance: 1In practice, in spite of philoso-*
* phies of "early involvement," AFPRO surveil- *
* lance is most heavily oriented to testing, *
* with little or virtually no strong involvementx*
* in design phases. However, the capability for*
* the program to be effective in the test phases*
* must be laid down and assured from the earli- *
* est design phases. Thus, not only is it cost *
* effective to correct problems in the design *
* phase, when feasible, but it is also neces- *
* sary to assure the quality of testability from*
* the earliest design phases. Otherwise, the *
* test phase can be explosive in terms of cost, *
*
*

schedule, and morale (Evans, 1984). *
A Kk * * k Kk k k Kk *k k Kk *k Kk *x k k k * k k *k *k *

1.3.8 Quality Assurance. In simplified terms quality

assurance is concerned (1) that quality be designed into the
product, (2) that quality be designed into the production
process and (3) that quality be executed in the production
process as evidenced by evaluation of end-products. 1In

spite of any theoretical positions or current management



Dennis Blosser & Associates
Final Report
Page 24

philosophies, the orientation of DOD to quality assurance is
understandably hardware—dominated, and as such, places its
greatest manpower effort in the third area of quality
assurance described above. In the case of-hardware, this is
probably a good strategy. 1In pre-production and production
development, the‘government definitely participates, but
puts the large burden.of technological manpower on the
contractor. But, in the final phase of quality assurance,
the government greatly steps up its participation to assure
the final end—product, before it is accepted.

AFCMD Quality Assurance policy for Software (AFCMDP

74-3, Apr 83) clearly dictates this orientation as inappro- .

priate for software.

***********************

*

* Planning should start 4s soon as possible

* after contract award..,

* There are four computer software disciplines
* which are needed to assure a quality computer
* software product. They are: 1) Design,

* 2) Documentation, 3) Configuration Management
* and 4) Quality Assurance. If one of these is
* missing, there is increased likelihood the

* computer software development effort will

*

*

experience. problems. (AFCMDP 74-3).
************************

***********

As was alluded to in the immediately prior section and
AFCMD policy, the m;st critical activities in software take
place in the design and testing phaﬁes.l Not only is this
in contrast to ha?dware orientation, but also the production

phase for software is so trivial, it may even be considered .

nonexistent. .




Dennis Blosser & Associates
Final Report
Page 25
In place of a significant production phase for
software, there is instead the software maintenance phase.
This is far from being a phase where corrections to software
might be made on a cost-effective basis, thus taking a
marginally functional system and "tweaking it up" at
reasonable cost. Instead, the maintenance phase for
software has been repeatedly shown to be (Fairley, 1985):
1) the most costly phase of the software life cycle,
and,
2) the life-cycle phase in which any given error costs
the most to correct.
For an illustration of the cost of correcting errors at
different points in the Life-Cycle, note the following

figure:



RELATIVE COST OF

ERROR CORRECTION

1000

100

Final Report

Dennis Blosser & Associlates
Page 26 .

Phase when error
is detected
-

- maintenance

—=f testing

-l programming

~sl{specification

-l conceptualization

FIG. TWO

ECONOMY OF EARLY ERROR
CORRECTION
(Martin.1985)




Dennis Blosser & Associates
Final Report
Page 27

1.3.9 Comprehensive Testing. In hardware systems, testing

can usually be nearly exhaustive, if desired. Certainly,
there are trade-offs and not all testing may be desireable
relative to some other cost factors, but testing of
components and complete systems is generally within option.
The case of software is quite different. In the case of
computer programs that are large enough to be significant
(and the programs involved with weapons systems are very
large), their complexity is so great that even automated
testing by intelligent computer programs cannot permit
exhaustive testing. The following diagram illustrates
dramatically how the complexity of a conceptually fairly
simple module quickly leads to impossible requirements for
exhaustive testing. This module contains in excess of 206
trillion unique paths. Assuming a mythical test generator
that could devise and execute tests for the paths in such a
module at a rate of one per millisecond, it would take over

6,000 years to exhaustively test all the unique paths.



Final Report

Dennis Blosser & Associates .
Page 28

15
iterations

FIG., THREE
OVER 206 TRILLION UNIQUE PATHS




Dennis Blosser & Associates
Final Report
Page 29

As a result, software developers are left with the task
of deciding by judgment which paths of a program are
critically important enough to test. This tends toward the
paradoxical, since this judgment is necessary because the
complexity is too great to permit analytical understanding.
Due to this impossibility of exhaustive testing and the need
to rely on judgment-based partial testing, software systems
have a quality of being "haunted" by errors which are almost
certainly there (since programming is highly error prone),
yet which have not been detected and whose criticality and
time of appearance cannot be assessed. Therefore, the
development and application of better test methods must be

relentlessly pursued.



Dennis Blosser & Associates
Final Report
Page 30

2.0 LIFE-CYCLE DIFFERENCES
The main differences between software and hardware in
contract administration can best be viewed in terms of the
weapons system life cycle (WSLC) and the software
development cycle (SDC). The overall WSLC consists of four
sequential and essentially discrete phases:
* Concept Exploration
* Demonstration and Validation
*# Full-Scale Development
* Production and Deployment
The first two phases of the WSLC are more study-like
than the latter two. Concept exploration is oriented mostly
toward paper study and computer simulations, examinations of
trade-off effects, feasibility, etc. Demonstration and
Validation is also study-oriented, but involves commitment
of resources to development of some actual subsystems for
study and testing. The outcome of the Demonstration and
Validation phase is the capability to produce a fully
functioning and reproducible prototype of the weapon system.
Full-scale development represents the first complete
development of enough versions of the weapons system
(including training and support) to test the fully operating
system and move into development of large volumes of
production in the final phase.
Within the phases of the WSLC, hardware ;nd software

have development life cycles which are somewhat comparable.




Dennis Blosser & Associates

Final Report

Page 31

(NOTE: THE PHASES ARE SIMILAR IN FUNCTION AND HAVE SIMILAR
NAMES, BUT THEY OPERATE VERY DIFFERENTLY WITHIN THE WSLC.

See table, following.)



Dennis Blosser & Associates .
Final Report

Requirements Analysis

Software Requirements
Analysis

Preliminary Design
Detailed Design
Coding, Unit Test and
Computer Software
Component Integration

Testing

Computer Software

Page 32
SOFTWARE DEVELOPMENT HARDWARE DEVELOPMENT
CYCLE CYCLE

System/Software System/Hardware

Requirements Analysis

Hardware Requirements
Analysis

Preliminary Design

. Detailed Design

Fabrication

Hardware Configuration

Configuration Item Testing Item Testing

TABLE TWO




Dennis Blosser & Associates

Final Report
Page 33

The terms used here are self-explanatory and the

sequences are intuitively meaningful, as well as the

parallels in software and hardware (some
should be present, since they develop as
of a parent system). But here is one of

differences for contract administration:

kind of parallelism
linked subsystems
the most critical

phases of the

hardware development cycle are expected to proceed in a

linear fashion with virtually no overlap

-- by contrast, the

phases of the software development cycle are expected a

poilori: tos

* Overlap one another significantly

* Proceed nonsequentially with an
indeterminate number of loops between
successive phases (this implies possible

paths from phase 6.0
1.0).

clear back to phase

* Overspan the phases of the WSLC (the
hardware cycle is expected to be
finished complete within a given phase

of the WSLC).

(It should be noted that both the hardware development

cycle and the software development cycle are likely to

appear in somewhat modified forms, as is appropriate, in the

first two phases.)

The following figure attempts to illustrate the

complexity of these relationships.



Dennis Blosser & Associates
Final Report

Page 34
hardware cycle
1—»2 —>»3—-—>4—>»5 —>»6
/
weapon system /
life cycle z
Concept Demonstration and Full Scale Production and
Exploration Validation Development Deployment
L

2 1'-.3 _I_-..,4

software cycie

FIG. FOUR
COMPLEXITY OF SOFTWARE
DEVELOPMENT CYCLE




Dennis Blosser & Associates
Final Report
Page 35
This increased complexity of the software development
cycle in its relationship to the WSLC has probable

implications for manpower training and allocation in

contract administration.



Dennis Blosser & Associates .
Final Report
Page 36

3.0 NING D S CTION OF SO SPECIALISTS

A popular myth has risen in the defense contracting
industry over the past five years. The need for software
engineers is tremendous. At the same time, avenues of
formal education and experiential resources are producing
qualified people at a very slow rate. Hence, the myth, born
of need, pressure and misconception: "Just take a bright
engineer who has had a few programming courses (or send him
to a few), and then he will be your software engineer."
(Pressman, 1982.)%*

Generally, it doesn't work (exceptions noted). First,

because software engineering and computer programming are

not the same thing. Second, because a "few courses" in
anything will not change the hardware engineering mind-set.
Third, because people designated as "the software person"
are looked to for leadership and authority. It is a very
rare individual who can carry off that role with inadequate

training and experience.

* The quotation is used here stylistically and does not
represent a direct quote, but rather a paraphrase.




Dennis Blosser & Associates
Final Report
Page 37
Regarding government contract administration, there
seems to be a similar myth. Take whoever has any kind of
computer training on his transcript (COBOL?, DP Systems?
AI?) and designate him as software focal point. The point
here is not to criticize software focal points, or to dampen
creativity in selection practices of management, or to deter
anyone from seeking and accepting career challenge. We need

to examine what can be done to support software focal points

through:
* Development of their leadership
abilities through training
* Development of their leadership roles
* Technical training (for themn)
* Technical training (their support for

their colleagues)
* Other areas

Although statements have been made here about casual
and general assumptions regarding training of people with
special roles regarding software, it is clear that training
and personnel development needs for software duties are
strong throughout the contract administration organization.
Hardly anyone is expressing competence to do this job. The
few who have strong competence know there is much more than
they can do.

(It has been pointed out that software focal points are
not intended to be software specialists, but only

administrative functionaries. However, the observation in



Dennis Blosser & Associates .
Final Report
Page 38
AFPROs is that software focal points are seen by themselves
and others as specialists and that the duties of this role
tend to expand over their other responsibilities.)

One of the assertions made frequently when AFPRO
personnel note that a contractor is not abiding by some
commonly accepted (or even common sense) software standard
is that the Program Office did not require it on the
contract; hence, it was not enforceable.

Assumedly, with the advent of DOD-STD-2167, much of
this kind of situation will subside.. Prior to DOD-STD-
2167, the main written standards for software were MIL-S-

52779A and MIL-STD-1679. These were inadequate by

themselves and so many of the specifics necessary to bring a
Statement of Work up to acceptable criteria had to be added
as specific items to each contract. Clearly, this left much
room for variance and ambiguity. Perhaps DOD-STD-2167,
which is very comprehensive, articulated and up to date,
will improve this situation to a degree. Nevertheless, it
must be acknowledged that no set of standards, no matter how
up to date or comprehensive, can substitute for a well-
written SOW or the oversight of development by a competent
government staff.

However, there is some reason to believe that part of
Program Offices' not requiring some specifics grew out of a

belief that the AFPROs lacked sufficient expertise to

support and enforce the requirements. This (along with .



Dennis Blosser & Associates

Final Report

Page 39

other direct assertions) suggests less than effective trust
and communication between Program Office and AFPROs.

One of the needs for this study is to examine ways to
insure that the positive potential of CAS personnel to
improve software acquisition is not dampened by historical
lack of trust and communication. New patterns of

organizational linkages are one route that will be explored.



Dennis Blosser & Associates
Final Report
Page 40

4.0 NONDELIVERABLE SQFTWARE

Nondeliverable software refers to that which is
intended to serve as a support in developing systems
(Computer Assisted Design software or Automatic Test
software, for example) or in production of systems (Computer
Assisted Manufacturing software, for example), but is not a
primary end-product (deliverable) of the system development
process. This software may be developed by a contractor as
needed, or acquired from a commercial source or from tﬁe
government.

Tremendous advantages are available through the use of
such support software. 1In the case of test software, for
example, a computer program can often generate and control
the execution of numbers of test cases which would represent
a number of man-years effort that would be literally
impossible if done by human operators. In the area of
production, Computer Assisted Manufacturing software can
control processes with tolerances, speeds and continuity
that could not be approached with human operators.

However, when nondeliverable software is used in the
development and production of weapon systems, we have to ask
the question:

* What are the consequences if
nondeliverable software does not
function properly?
Obviously, the consequences could range from trivial to very

serious both in terms of cost and safety.




Dennis Blosser & Associates
Final Report
Page 41
This leads to the conclusion that, even though some
support software is nondeliverable, it still requires
careful management and surveillance from both contractors
and the government. There is currently very little
attention being paid té the various aspects of management of
nondeliverable software. Notably, one approach to the
management of nondeliverable software did surface with some
consistency. This is a report by Major George Trevor which
surveys the concerns of nondeliverable software and offers
some guidelines. A draft version of this report is included
in the Appendix. At present, there is a level-of-awareness
problem. In general, the lack of attention to
nondeliverable software comes from four sources:

(1) The very heavy and specific focus on
deliverable software,

(2) Existence of clear-cut standards and
procedures for deliverable software that are
lacking for nondeliverables,

(3) Assumption that if it is nondeliverable, its
development cannot be important enough to
warrant management effort,

(4) Assumption that if the nondeliverable
software is obtained from the government or a
commercial source, it has to be 0.K.

A slightly different position than that characterized above
was also observed. It may be characterized as "surveillance
of nondeliverable software is important and MIL-STD-2167

says we should do it, but we don't even have enough manpower

to fulfill the needs on deliverable software."



Dennis Blosser & Associates
Final Report
Page 42

5.0 TE CA ASKS IN SOF ACQUISITION

5.1 Introduction and Background

This portion of the research was undertaken to
investigate, from the point of view of the Air Force
Contract Management Division (AFCMD), the following general
question: How can AFCMD and the System Program Offices
(SPOs) carry out their joint responsibilities in the

acquisition of mission critical computer resources (MCCR)

software more effectively?
More specifically, under this general question, the
following questions were to be addressed:

Should policies, practices, etc., be changed for
more combined effectiveness?

What skills/training for contract administration
personnel would support recommended changes?

This part of the research was conducted by three main
methods in order to accumulate basic results relevant to the
research questions:

(a) Review of Air Force documents concerning the
formal policies for operations of SPOs and AFCMD
in the acquisition of MCCR software,

(b) Interviews with SPO and AFCMD personnel at five
various locations each throughout the country
regarding the actualities of their operations (as

compared to formal policy), and their viewpoints




Dennis Blosser & Associates
Final Report
Page 43
and suggestions regarding the basic questions of
this research.

(c¢) Consideration of: (1) discrepancies between
formal policy and reported actualities, (2) policy
itself, as written, and (3) expressed attitudes
and suggestions of those interviewed.

The existence of this study implies that there is a
felt need to improve the effectiveness of MCCR software
acquisition. Studies have shown (cf. Booch, 1983) that
throughout the Department of Defense, software costs are
increasing at a tremendous rate (six billion dollars in
1980, predicted to exceed 32 billion by 1990) while at the
same time software is frequently behind schedule and of poor
quality, which in turn impacts overall system delivery
schedule and increases overall system costs.

One of the underlying factors in this state of affairs
is a severe shortage of personnel trained in software
engineering. As of 1984, only three institutions of higher
education were training software engineers (Schaar, 1984).
Although this situation is improving, it is predicted that a
lag and shortage of well-trained and experienced personnel
will be a problem for contractors and government for the
foreseeable future.

Thus, one of the fundamental sources of problems in

MCCR software acquisition is a shortage of well-trained and




Dennis Blosser & Associates
Final Report
Page 44

experienced personnel that strongly affects both the

contractors and the government acquisition organizations.
A second underlying factor in the problems of MCCR

software acquisition is time pressure. A repeated
observation by both SPO and AFCMD personnel was that many
critical facets of the MCCR software acquisition process
were swept over by the time pressure of schedules. This
ranged through the whole acquisition process, from not
having time to prepare Statements of Work and contractual
requirements with sufficient thoroughness, to not being
thorough enough with pre-award surveys, to glossing over

failures in quality assurance, to glossing over software

review and test problems, etc., all because of time
pressure.

It is likely that the shortage of well-trained software
personnel interacts with the time-pressure problem source.

A final source of problems should be considered from
the AFCMD point of view. 1In light of the problematic nature
of MCCR software acquisition, the shortage of well-trained

personnel in this area, and the interactive critical effects

of time pressure, it is seriously ineffective and a waste of
government funds to under utilize the capacity of any

component of the government's MCCR software acquisition

organizations. Nevertheless, an Inspector General study in
1981 showed that in general, SPOs regarded AFCMD personnel

as significantly lacking capability in the software area. .



Dennis Blosser & Associates

Final Report

Page 45

AFCMD headquarters personnel contend that this is currently
not the case, but that the SPOs still regard AFCMD in this

fashion and thus tend to under utilize their capabilities.

5.2 Identification of the Tasks

The first major requirement for this Phase of the study
was to identify technical tasks to be performed by the
government when acquiring software products. This
corresponds to task 4.3.1 of the Statement of Work.

The strategy in identifying tasks for software
acquisition was to limit the scope of tasks to those aspects
of the software acquisition process which primarily involve
SPO (System Program Offices) and CAS (Contract
Administration Service) activities. This strategy was used,
since the context of the State of Work (SOW) makes it clear
that these aspects of software acquisition and these two
agencies are the focus of the study.

Tasks in software acquisition were additionally
selected on the basis of these further criteria:

(1) Task should represent an appreciable volume of
work to be done, usually by more than one
individual.

(2) Task should represent a process rather than an
event.

(3) Task should be software dominated. (This



Dennis Blosser & Associates
Final Report
Page 46

distinction is difficult, not always clear, and
probably arguable).

(4) Task should, as much as possible, represent a

description of "what is to be done" rather than
"how to" or criteria or policy. (Once again, a
sometimes less-than-clear distinction.)

Many sources were reviewed and influence the selection
of tasks specified for this study (see References). In the
final analysis, it was decided to move as close as possible
to concrete tasks and away from generic or more abstractly
stated tasks. For this reason, and due to ultimately

arbitrary choices, the documents which were relied on to the

greatest extent in the final analysis were:

(1) Airborne Systems Software Acquisition Engineering

Guidebook for Contracting for Software
Acquisgition, ASD/ENAI.

(2) Contracting for Software Acquisition, Software
Acquisition Guidebook Series, ASD/ENE

(3) Contract Administration of Mission Critical

Computer Resources in Systems Acquisition, Joint

Contract Administration Coordinating Council
Guidebook, draft.
(4) Captain Dennis W. Smith, personal communication.

(5) Guide to the Management of Embedded Computer

Resources, Space Division.




Dennis Blosser & Associates
Final Report
Page 47

Table Three, below, contains the 89 tasks identified
for software acquisition. The context here is software, so
that is specifically implied for each task, even if not
stated. The order of the tasks shown is in roughly
chronological order. However, strict chronological order
and sequentiality must not be expected.

While Table Three is intended to be comprehensive,
there are some restrictions which must be made in this
sense. First, there is the problem of diversity. Although
one criterion in selecting tasks for this analysis was
concreteness, this criterion itself (though useful)
mitigates against comprehensiveness. Software applications
in embedded systems are so diverse that any given project
may have a great deal of uniqueness in its software. For
this reason, the only way to cover all possibilities is to
present tasks that are extremely generic or abstract.
Hopefully, a useful middle-ground has been achieved here.
However, any given application may certainly require tasks
not represented here.

The second problem for comprehensiveness involves the
problems of the extent of the effects of software. With
increasing applications of computers and complexity of
software, it is difficult to delimit the extent of the
effects of software. The selection of tasks for this study
implies a delimitation of the systemic influences of

software. It is noted that this is sensible but arbitrary.



Dennis Blosser & Associates
Final Report
Page 48
TABLE THREE
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

3l Use the following checklist as appropriate to
prepare RFP package.

Checklist
A - Introduction

(1) Define software to be developed
(2) State function of software

(3) Identify users

B - Scope
(1) Define the development phase
(2) Define technical objectives in each phase
(3) Brief previous history

(4) Reference documents




Dennis Blosser & Associlates
Final Report
Page 49
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISiTION

OF SOFTWARE

Checklist Continued

C - Tasks

(1) Specific requirements for contractor

(2) No "to be determined" or informal tasking

(3) "Identify" and "design" tasks giving
specific module functions

(4) Requirements for design management

(5) Requirements for test methodology planning,
execution and evaluation

(6) Requirements (if any) for independent
verification and validation

(7) Requirements for definition of acceptance
certification

(8) How user training will be supported

(9) Requirements for operational simulations
and/or rehearsals

(10) Requirements for methodology and capacity

to modify and upgrade software




Dennis Blosser & Associates
Final Report
Page 50

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

Checklist Continued
D - Review compliance documents for applicability
* Work Breakdown Structure (MIL-STD-881A)
* configuration Management (MIL-STD-483)
(tailored as required)

'* specification Practices (MIL-STD-490)

(tailored as required)

Technical Reviews and Audits for Systems,
Equipment and Computer Programs (MIL-
STD-1521A) (tailored as required)

Software Quality Assurance Program

Requirements
(MIL-S-52779A)

Specifications, Types and Forms (refers to

'MIL-STD-483/490) (MIL-S-83490)

* Software Development Standard (MIL-STD-

2167A) (tailored as required)

---------- End of Checklist ----------




Dennis Blosser & Associates
Final Report
Page 51
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

2. Request inclusion of all detailed assumptions and

rationale for submitted software cost estimate.

3. Request that the proposal includes appropriate reuse
of appropriate software previously developed by

the contractor.

4. Refine the statement of work by internal review and

revision.

5. ALTERNATELY (for large projects > $1M)
g Compile a list of interested bidders.
° Circulate draft RFP and get questions from
bidders.

Hold a briefing for interested bidders to answer

(anonymous) questions.




Final Report

Dennis Blosser & Associates .
Page 52

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

6. Assess whether to separate conceptual validation and

development phases into separate contracts.

7. Understand the contractual data items relevant to

the specific procurement.

8. Customize the application of relevant data items to
the specific environment and acquisition

strateqy.

9. Conduct a pre-award survey. Review a guidebook such
as "Pre-~Award Survey for Contractor Software

Developments" (SD/ALR Guide, June 1982).

10. Submit the pre~award survey document to bidders upon
receipt of their proposals and allow a minimum
of four weeks for them to organize their

responses prior to conducting the survey.




Dennis Blosser & Associates
Final Report
Page 53
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

11. Prepare a comprehensive set of questions for each
major software area relevant to the contract and

tailored to the contractor's environment.

12. Conduct the interviews on site with allowance for
the answers to questions to spontaneously
generate new questions or areas of
investigation/audit as appropriate (i.e., highly

skilled and software-experienced interviewers).

13. Assemble a team of highly skilled software
management experts to conduct the pre-award

survey.

14. Assess the survey results and submit the assessment

to the appropriate AFPRO or DCAS.




Dennis Blosser & Associates
Final Report
Page 54
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

15. AFPRO or DCAS has responsibility to finalize pre-

award report and provide the report to the SPO.

16. AFPRO/DCAS can conduct software pre-award, but SPO

has final responsibility for assembly of total

teamn.

17. If the contractor's (or contractor's division)
average net profit is small relative to the size
of the software contract and the contract is
"firm, fixed-price," the financial capability
aspect of the pre-award survey must be
critically considered along with the software
component. This is because estimates of
software costs are extremely volatile, and
actual costs may exceed estimates as a factor of
ten. This situation poses a possibly severe

risk for receiving the desired product.




Dennis Blosser & Associates
Final Report
Page 55
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

1s8.

19.

20.

21.

22.

Obtain general assistance and information on
contractor's general capabilities in software
areas from AFCMD. Augment AFCMD capability with
SPO personnel during conduct of the pre-award
survey.

Establish channel of communication between SPO and
AFCMD specific to new program/project.

Determine requirements necessary for letters of
delegation to subcontractors.

Conference contract administration, quality
assurance, engineering, and other AFCMD support as
necessary to ensure flow of information to SPO.

Identify contract requirements for performance
measurements.




Dennis Blosser & Associates
Final Report
Page 56
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

23. Define the relationships and responsibilities of the
SPO and AFPRO for the contract, including a
memorandum of agreement, if appropriate.

24. General review of draft RFP for consideration of all
components to ensure enforceability of contract
requirements, proper subcontract or management,
complete pricing requirements, and consideration
of delegation of some monitoring efforts to AFPRO
by SPO not already included in the RFP.

25. Review of the draft SOW to determine whether the
management requirements, software development of
criteria, procedures, referenced to CDRLs and
specifications, and other consideration provide
adequate means to properly monitor the contract.

26. Review of the draft CDRLs to determine the
effectiveness of the DIDs and detailing of CDRLs
provide adequate means to properly monitor the
contract.




Dennis Blosser & Assocliates
Final Report
Page 57
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

27. Review of the draft RFP to determine the
reasonableness of the overall time duration;
whether the delivery schedule for various plans
supports their valid useability; identification of
critical needs for long lead times:
appropriateness of milestones and sequences; areas
of high potential risk to schedule maintenance.

28. Review of the draft RFP to determine the presence of
appropriate and current versions of standards and
specifications and to check tailoring against
requirements for valid administration of contract.

29. Prepare and review sample contract to ensure
inclusion of necessary clauses and forms, deletion
of unnecessary forms and clauses, proper Cross
references to MIL-specs included in SOW/CDRL, and
other technical and clerical details.




Dennis Blosser & Associates
Final Report
Page 58
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

30'

31'

32.

33.

34'

35'

36.

37'

Prepare source selection plan.

Obtain approval of source selection plan from Source
Selection Authority.

Establish criteria for evaluation.

Establish factors and standards.

Prepare an independent cost estimate.

Evaluate proposals.

Determine the competitive range.

Identify deficiencies in proposals.




Dennis Blosser & Associates
Final Report
Page 59
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

38.

39.

40.

41.

42.

43.

44.

45.

Carry out written/oral discussions with bidders.
Obtain final and definite contracts.

Negotiate prices with bidders.

Complete evaluation.

Prepare Source Selection Evaluation Board Report.
Prepare Source Selection Advisory Council Report.
Render final Source Selection Authority decision.

Document the source selection decision.




Dennis Blosser & Associates
Final Report
Page 60

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE .

46. Evaluation of proposal by CAS representatives based
on past experiences with administration of
contracts with similar requirements and
characteristics.

47. Participation in Source Selection panels by CAS
representatives specifically in regard to
historical knowledge of abilities of bidders under
consideration and experience with technical and
management aspects of bidders' proposals.

48. Review contract as awarded to determine presence of
software functional areas such as Work Breakdown
Sstructure, Military Standards and Specifications,
Contract Data Requirements Lists, Software
Development Plan, Software Configuration
Management Plan, Software Quality Assurance Plan.

49. Identify and document potential contract
administration problems due to terms and

conditions of the contract.




Dennis Blosser & Associates
Final Report
Page 61
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

50.

51.

52.

53.

54.

Insure that formal agreements (such as Memorandum of
Agreement) exist between SPO and CAS identifying
their specific duties and responsibilities
concerning software.

Develop an internal CAS plan for assignment of
manpower, test and review participation,
inspection points, and communication
responsibilities.

Identify and develop plan for desired contract
administration activities for subcontracted
software.

Optional SPO and CAS Post-award Orientation
Conference of software concerns and
responsibilities.

ongoing evaluation and review of contractor's

management system for software development.




Dennis Blosser & Associates
Final Report
Page 62

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

55.

56.

57.

58.

59.

€0.

Monitor critical subcontracts for flow-down of
software contract requirements.

Monitor cost, schedule, and performance of software
development tasks.

Resolve technical and management problems in

software development process.

Review and evaluate software Engineering Change

Proposals.

Review contract modifications for any possible

effects on monitoring software development.

Monitor development and deliveries of software

Contract Data Requirements List documents.




Dennis Blosser & Associates
Final Report
Page 63
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

61.

62.

63.

64.

65.

Monitor and review compliance with automated test
system standards and documentation.

Audit contractor compliance with software
requirements for configuration management and
quality assurance.

Review and report to SPO on contractor's technical
planning and management of software development
prior to each formal review.

Follow up all action items designated by SPO as a
result of each formal review.

Evaluate the adequacy of the contractor's system
requirements definition through the formal System
Requirements Review.




Dennis Blosser & Associates
Final Report
Page 64
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

66.

67.

68.

69.

Evaluate the completeness of the allocated technical
requirements and the technical and management
risks of the software development through the
formal Systems Design Review.

Assess the contractor's system development tools and
management and technical abilities to carry out
the necessary development functions.

Review the Computer Software Configuration Item's
functional, performance, data base, qualification,
interface, and delivery requirements through the
formal Software Specification Review.

Assess proceeding with contractor's designs for each
Computer Software Configuration Item through the
formal Preliminary Design Review.




Dennis Blosser & Associates
Final Report
Page 65
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

70. Determine preparedness to proceed to the coding
phase through evaluation of the contractor's
Software Detailed Design through the formal
Critical Design Review.

71. Monitor software coding phase.
72. Monitor software integration and test.

73. Evaluate test procedures, tools, facilities,
personnel, configuration control procedures, and
other necessary factors to determine preparedness
for qualification testing through the formal Test
Readiness Review.

74. Evaluate the performance of the software, the
adherence to approved test procedures, and the
accuracy of test results through Formal Testing.




Dennis Blosser & Associates
Final Report
Page 66

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

75.

76.

77.

78.

Evaluate the validity, compliance, and accuracy of
test results of the software integrated into the
system through formal System Integration and Test.

Document the completeness of meeting requirements
and specifications, and testing of each Computer
Software Configuration Item and Software Product
through formal Functional and Physical
Configuration Audits.

Monitor planning and execution of Independent
Verification and Vvalidation.

Monitor development of automated tools used to
prepare technical manuals, operating procedures,
engineering drawings, etc., to assure
compatibility with end-user systems.




Dennis Blosser & Associates
Final Report
Page 67

TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

79.

80.

8l.

82.

83.

84.

Monitor assurance that configuration management and
historical data systems are maintained.

Determine compatibility of maintenance procedures to
human factors and equipment.

Evaluate training requirements for operation and
support of the software system.

Evaluate software system documentation to assure
support of post-acceptance maintenance.

Evaluate logistical support to system users for
post~-acceptance maintenance.

Complete software acceptance procedures.




Dennis Blosser & Associates
Final Report
Page 68
TABLE THREE CONTINUED
TECHNICAL TASKS IN THE ACQUISITION

OF SOFTWARE

85.

86.

87.

88.

89.

Review the Configuration Management Plan for post-
development software support.

Review the Software Quality Assurance Plan for post-
development software support.

Review Software Test Plans for post-development
software support.

Determine that proposed engineering changes,
deficiencies, and latest defects in software are
corrected by the contractor and the Configuration
Management Plan adjusted accordingly.

Establish a Configuration Management Plan for post-
development software support.




Dennis Blosser & Associates
Final Report
Page 69
The tasks in this table are drawn from sources which
predate MIL-STD-2167. However, they are generic enough that
it is unlikely that 2167 would have much effect on them.
Also, the policy which these tasks reflect will probably not
be reconsidered in the light of 2167 for some time, since

2167 is a contractor standard.



Dennis Blosser & Associates
Final Report
Page 70

6.0 RELATION OF TASKS TO SPO AND CAS

The second major requirement of this phase of the study -
was to identify those technical tasks more appropriately
performed by SPO personnel and those more appropriately
performed by the in-plant CAS personnel. This corresponds
to task 4.3.2 in the SOW for the study.
It creates problems to devise exclusive divisions of
tasks, such as those in Table Three, between agencies such
as SPO and CAS, i.e., the acquisition and development of
software is complex and nonlinear. It is not reasonable to

expect that a totally simple, clear-cut division of tasks

would be feasible. The notion of concise separation is
certainly appealing administratively. But in terms of
effectively acquiring the development of complex software
systems, this would amount to a useless oversimplification.

In order to move toward a useful separation and
coordination of tasks which would result in effective
software acquisition, the contractor has derived a
simplified schema for the relationships among tasks and the
two agencies involved in the acquisition of software. The
aim here is to:

(1) produée clarification,

(2) support analysis and evaluation,

(3) establish effective roles,

(4) acknowledge interrelated roles, and




Dennis Blosser & Associates
Final Report
Page 71
(5) avoid oversimplification.
For this purpose, a very simple schema was established
for the assignment of task relationships to SPO and CAS.
The schema is shown in Table Four.
The schema was kept as simple as possible, which seems
appropriate for the present study. However, if these
recommendations are considered for implementation, it may be

that a more articulated schema would be useful.



Dennis Blosser & Associates
Final Report
Page 72

TABLE FOUR
SCHEMA OF TASK-RELATIONSHIPS

FOR SPO AND CAS

Code Use In Table III Meaning
I Primary Responsibility
II Must be Consulted
IIT May be Consulted

-— No significant responsibility
(Does not imply exclusion or
that responsibility may not be
enlarged by agreement.)




Dennis Blosser & Associates
Final Report
Page 73

Table Five shows the tasks previously identified for
software acquisition displayed against task-relationship
codes for SPO and CAS. In Table Five, only a key word or
phrase is given for each task. However, the number of each
task in Table Five corresponds to the number of the full
task description in Table Five, for reference.

There is a great deal of information contained in
Table Five, and of course, the distinctions it makes should
be considered in detail by anyone undertaking to implement
its recommendations as policy. However, without addressing
each item individually, the general implications of Table
Five can be usefully summarized.

Table Five reflects an increased amount of required
consultation of the CAS by the SPO than is currently
reflected in written policy and/or practice. This is
especially true in the areas of pre-award survey and RFP
development. Interviews conducted in the study indicate
that under current practice, valuable knowledge developed by
CAS agencies through their long-term relationships with day-
to-day contractor activities is under-utilized and wasted in
these areas. If followed, the recommendations of Table Five
should alleviate this situation, which should not be allowed
to continued in the critical, costly, and problem-ridden

area of software acquisition.



Final Report

Dennis Blosser & Associates .
Page 74

TABLE FIVE
TASK-RELATIONSHIPS CODED FOR

SPO AND CAS

Task SPO CAS
RFP Package Checklist I o
Request cost assumptions I —

Previously developed

software reuse I ===

Internal SOW refinement I ——

Alternate bidder input I -




Dennis Blosser & Associates

Final Report

Page 75
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS

Task SPO CAS
6. Assess contract separation I III
7. Understand data items I ——
8. Customize data items I III
9. Conduct pre-award survey I II
10. Pre-award survey to bidders I ——
11. Prepare pre-award questions I III




Dennis Blosser & Associates

Final Report

Page 76
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS

Task SPO CAS
12. On-site interviews I II
13. Assemble software expert team I II
14. Submit assessment to CAS ag ———
15. Finalize pre=-award report -—— i
16. CAS pre-award survey I II




Dennis Blosser & Associates

Final Report

Page 77
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
17. Evaluate contractor
profit-volume/risk I -——-
18. Input from AFCMD on
pre-award IT I
19. Establish SPO/AFCMD
communication I I
20. Subcontractor letter
requirements I II




Dennis Blosser & Associates’

Final Report

Page 78
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAsS
Task SPO CAS
21. AFCMD internal conference —— I
22. Contract requirements for
measurement IIT I
23. SPO/CAS relationships I I
24. Review draft RFP III I,II
25. Review draft SOW III I, II




Dannis Blossar & Associates
Final Report

Page 79
TABLE FIVE CONTINUED
TASK~RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
26. Review CDRLs III I, IT
27. Review draft RFP
scheduling III I,IT
28. Review standards,
specifications, tailoring IIT I,II
29. Review sample contract
validity IIT I,II
30. Source selection plan I III




Dennis Blosser & Associates
Final Report

Page 80
TABLE FIVE CONTINUED
TASK~-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
31. Source selection plan
approval I -
32. Establish evaluation
criteria I III
33. Establish factors and
standards I III
34. Independent cost estimate I II
35. Evaluate proposals I IT




Dennis Blosser & Associates

Final Report

Page 81
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND Cas
Task SPO CAS
36. Determine competitive
range I ITI
37. Identify deficiencies I II
38. Confer with bidders I III
39. Final contracts I -——-
40. Negotiate prices I III




Dennis Blosser & Associates
Final Report

Page 82
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPQ CAS
41. Complete evaluation I 15308
42. Source Selection Evaluation
Board report I -
43. Source Selection Advisory
Council report I ———
44. Final Decision g -——
45. Document Decision I ——




Dennis Blosser & Associates

Final Report

Page 83
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
46. CAS proposal evaluation ——— 3 €10
47. CAS in Source Selection
Panels I III
48. Review awarded contract -— I
49. Identify potential
contract problems —— I
50. Insure specificity of
SPO/CAS agreements I I




Dennis Blosser & Associates
Final Report

Page 84
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
51. Internal CAS plan III I
52. CAS subcontract plan III I
53. Post-award orientation
conference II I
54. Ongoing management
evaluation II I
55. Subcontract flowdown II I




Dennis Blosser & Associates

Final Report

Page 85
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
56. Monitor software
development measures 11 I
57. Technical and management
problem resolution I,II I,IT
58. Evaluate engineering
change proposals I,IT I,IT
59. Review contract modifications III i
60. Monitor CDRL delivery III I




Dennis Blosser & Associates
Final Report

Page 86
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
61. ATS standards
compliance III I
62. CM and QA compliance
audits IIT I
63. Pre-review reports II I
64. Follow-up review

action items IT I




Dennis Blosser & Associates

Final Report

Page 87
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
65. Systems Requirements
Review 3 III
66. System Design Review i II
67. Assess development
capabilities II I
68. Software Specification
Review I II1
69. Preliminary Design Review I II




Dennis Blosser & Associates
Final Report

Page 88
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS .
Task SPO CAS ‘
70. Critical Design Review I II
71. Coding monitor II I
72. Integration and
test monitor II I
73. Test Readiness Review I II
74. Formal Testing I II )




Dennis Blosser & Associates

Final Report

Page 89
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
75. System Integration Test I IT
76. Monitor Configuration Audits II I
77. Monitor IV & V II I
78. Monitor tools
compatibility II I
79. Assure CM maintenance II I




Dennis Blosser & Associates
Final Report

TABLE FIVE CONTINUED

TASK~RELATIONSHIPS CODED FOR

SPO AND CAS

Page 90

80.

81.

82.

83.

84.

Evaluate Human and

equipment compatibility

Evaluate Training

Requirements

Evaluate documentation

Evaluate logistical

support

Software acceptance

IT

IT

IT

1T

1T

(@]
n




Dennis Blosser & Associates

Final Report

Page 91
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS
Task SPO CAS
85. Review CM for
post-development II I
86. Review SQA plan for
post-development II I
87. Review Test Plans
post-development II I
88. Determine corrections
and updates II I




Dennis Blosser & Associates
Final Report

Page 92
TABLE FIVE CONTINUED
TASK-RELATIONSHIPS CODED FOR
SPO AND CAS X
Task SPO CAS

89. Review CM plan for

post-development II I




Dennis Blosser & Associates
Final Report
Page 93

Another general effect of Table Five is to recommend
more compulsory participation of CAS personnel in formal
reviews during the development process. As specified here,
required CAS participation would begin with the Systen
Design Review (Table Five, number 66). Such early
involvement is necessary in order for CAS personnel to do
their jobs effectively through the later stages of the
software development process. Also, CAS familiarity with
day-to-day problems of software development offers the
potential to predict and prevent potential problems earlier
in the development process. This offers the possibility of
great dollar and time/schedule savings to the government.

A final phrase in the SOW for this component of the
study is "for each task assignment, give rationale and
identify benefits accrued to the government." To do this
for each task assignment would be extremely redundant, as
the rationale for each assignment (in that it differs from
current policy/practice) is pretty much the same and is
outlined in the immediately preceding paragraphs along with
potential benefits. In short, current policy and practice
fails to utilize available CAS potential to produce better
software contracts and fails to involve CAS personnel early
enough to support their potential contributions to early
problem prevention and correction. Since software

development is so costly in dollars and schedule and so



Dennis Blosser & Associates
Final Report
Page 94

burdened with errors and setbacks, fuller use should be made
of these obvious potentials.

Probably the most specific and clear-cut policy
statement regarding the task-relationships in Table Five
appears in AFSCR 800-42:

"3,C. System Program Office will --

(8) 1Involve AFCMD (before initial contract award)
or the AFPRO in the development and review of the
following program documents, and as a participant in
the following precontract activities. Except for sole
source acquisitions not administered by AFCMD, AFCMD
should be involved to help make sure the contract can
be properly administered, even if the resulting
contracts may be administered by another CAO agency.

(a) Program management plans (PMP).

(b) Acquisition plans (AP).

(c) Statements of work (SOW).

(d) Requests for proposals (RFP), including
draft RFPs.

(e) Drafts of proposed contracts.

(f) Subcontract management plans (SMP).

(g) Proposal evaluations.

(h) Source selections.

(i) Contract negotiations.

(j) Business strategy panels (BSP).

(k) Solicitation review panels (SRP).




Dennis Blosser & Associates
Final Report
Page 95

(1) Manufacturing management and production
capability reviews (MM and PCR).

(m) Production readiness reviews (PRR).

(n) Quality or product assurance assessments

and reviews.
(o) Any other areas in which AFCMD support

would be available."

The above, along with other areas in AFSCR 800-42, are
essentially spelled out in detail specific for software in
Table Five. Although AFSCR 800-42 would appear to imply the
increased CAS involvements recommended above, interviews
with SPO, AFPRO, and AFCMD personnel indicate that in the
software area, these involvements are happening infrequently
or not at all. Assumedly, it is the prerogative of AFSC to

enforce these involvements.



Dennis Blosser & Associates
Final Report
Page 96

7.0 CAS PERSONNEL SKILLS AND STAFFING

The third major requirement of this phase of the study
was to utilize the technical tasks to be performed by the
CAS to identify personnel skills required within the CAS
organizational functions to carry out those tasks. This
corresponds to Task 4.3.3 of the SOW for the study.

As a preliminary to identifying personnel skills to
carry out tasks which the prior analyses show to be
prominent for CAS, an analysis of CAS responsibilities with
regard to functional areas (Engineering, Quality Assurance,
Manufacturing, Contracting, Program Management Support,
Property Management, and Subcontracting) was carried out.
Criterion for the inclusion of a task in this analysis was
that it have either a I or II rating in the analysis shown
in Table Five. The idea for this criterion was to provide a
first approximation of those tasks where CAS personnel have
more critical responsibility. A table showing the plot of
selected tasks against responsibilities assigned each
functional area is included in Appendix C. Visual
inspection of this table led to the grouping of tasks into
two areas:

(1) Those tasks where high level of responsibility was

spread over several functional areas.

(2) Those tasks where high levels of responsibility

were assigned to few functional areas. In the




Dennis Blosser & Associates
Final Report
Page 97
case of all but one such task, the only two
functional areas with high levels of
responsibility were Engineering and Quality
Assurance.

The following tasks were identified as having
responsibility spread over several functional areas:

Task Number (refer to Appendix C)

15
18
19
21
23
48
49
50
52
53

All of the remaining tasks are evaluated as having
higher levels of responsibility limited to few functional
areas.

Since the tasks representing higher responsibilities
limited to few functional areas included (virtually) only
Engineering and Quality Assurance, the skills required to
perform the tasks must reflect (1) a general area, (2) an
Engineering area, and (3) a Quality Assurance area. Tasks

which had high responsibility rankings only for Engineering



Dennis Blosser & Associates
Final Report
Page 98
and Quality Assurance are shown separately for these two
functional areas in tables in Appendix C. These tables
match tasks for Engineering and Quality Assurance against
suggested training areas. These training areas are
discussed below.

For the purposes of the present analysis, the tasks
shown in Table Five as requiring major CAS input only
suggest a partitioning of CAS functional units into the
three following categories:

(1) Engineering

(2) Quality Assurance

(3) All other functional units.

The implication of this breakdown is that Engineering
and Quality Assurance appear to have the most general,
specific, long duration, and continuous contact with the
development of software. Other units tend to have more
general, briefer, or more technically limited contact with
software development. It is admitted at the outset that any
statements of this nature are clearly generalizations, and
there are likely to be important exceptions. The exceptions
should be responded to in accordance with their specific
training needs, whatever those should be.

The information in Table Five and the three categories
just outlined above lead to describing three areas of
training for CAS personnel (the term "training" is used for

convenience here to refer to any combination of formal or




Dennis Blosser & Associates
Final Report
Page 99

informal training and/or experience which results in the

knowledge/skill areas outlined):

(1)

(2)

(3)

Training of a basic and general nature which
should be obtained by all affected CAS personnel
(includes Engineering and Quality Assurance).
This area is hereafter referred to as -- Software

Development Management Evaluation.

Specific training areas relevant to affected
Engineering personnel. This area is hereafter
referred to as -- Software Development Technical

Engineering Evaluation.

Specific training areas relevant to affected
Quality Assurance personnel. This area is

hereafter referred to as -- Software Quality

Assurance Evaluation.

The Software Development Management Evaluation Area is

intended to give a general and basic background in software

acquisition for all affected CAS personnel. This broad area

is seen as probably sufficient coverage of the area for all

personnel except for Engineering and Quality Assurance. In

the case of Engineering and Quality Assurance personnel,

Software Development Management Evaluation is seen as

introductory and basic to the other areas more specific to



Dennis Blosser & Associates
Final Report
Page 100

Engineering and Quality Assurance. One advantage of

identifying an area such as this is that it establishes a
"core" and a common basis of knowledge, understanding, and
communication for all CAS personnel involved with software
acquisition.

The more specific training areas under the label of

Software Development Management Evaluation are:

- Acquisition and Development Cycles for Software
- Cost Estimation Methods and Problems in Software

Development

- Management Principles in Software Development

Quality Factors throughout the Software Life Cycle

Cost Factors throughout the Software Life Cycle

General Requirements and Intentions of MIL-STD-2167.

Engineering Training. Using the background described above
as a prerequisite foundation, specific areas of training for
Engineering are grouped under the heading, Software

Development Technical Engineering Evaluation:

- Technical Cost Aspects of Software Planning

- Technical and Quality Factors in Requirements
Analysis

- Software Specification Techniques

- Engineering Management in the Software Life Cycle

- Software System Development Techniques

- Software Test Development Techniques




Dennis Blosser & Associates
Final Report
Page 101
- Software Program Design and Coding
- All of the above are assumed to involve MIL-STD-2167

and current or future regulations and additional

standards as appropriate.

Quality Assurance Training. At the outset, it must be

commented upon that Quality Assurance has a system (called
"KSAs" for Knowledges, Skills, and Abilities) which arises
from and/or is linked to job-task analysis. The KSA system
is very advantageous for analyzing and planning training
needs. The analysis presented here is based on broad tasks,
whereas the KSAs are based on a much more detailed job-level
task orientation. The data presented here may possibly shed
light on KSAs, but should in no way be seen as an approach
to critique or change the KSA systen.

The following areas of software training are assumed to
rest on a foundation of the knowledge in the Software

Development Management Evaluation, or core area, and are

here labelled Software Quality Assurance Evaluation:

- Software QA plans and Software QA plan development

- Software QA in test plan auditing and test execution
auditing throughout the Software Life Cycle

- Software configuration management auditing throughout
the Software Life Cycle

- Software Quality Assurance standards for software

development throughout the Life Cycle



Dennis Blosser & Associates
Final Report
Page 102

- 211 of the above are assumed to involve MIL-STD-2167
and current or future relevant regulations and

standards.

Further Recommendations for Training Development. The areas

outlined here arise clearly from the task analyses which
comprise this study. A next step in the production of high-
utility training would be to utilize the areas identified
here as guidelines to conduct more detailed job-task
analyses and arrive at highly specific training objectives
such as those currently found in the Quality Assurance KSAs.

It is recommended that all CAS training implied here be
refined to the level of specificity exemplified by the KSas.
Such systems of specific training objectives offer a number
of benefits, such as:

(1) A basis to evaluate the comprehensiveness of
training considered

(2) A system for continuous evaluation of specific
training needs of individuals

(3) A system for determining needs of groups

(4) A system for establishing priorities for training
when distributing limited resources

(5) A system for tracking specifically where training
funds, resources, and time have been applied

(6) A system to clarify training needs requested from

training contractors.




Dennis Blosser & Associates
Final Report
Page 103

The net result of these advantages should be more
effective training and more cost-effective training. As an
example, the Quality Assurance KSAs are included in an
Appendix to this report in their entirety.

The foregoing discussion is oriented exclusively to
recommendations for the type and content of training
required by the various CAS organizations. Another
important aspect of the topic of CAS software skills is the
availability of manpower resources.

Interviews with CAS personnel at AFPRO sites and at
HQ/AFCMD consistently reflected an overall shortage of
manpower in addition to a shortage of personnel adequately
skilled in software. The prevailing point of view might be
characterized by the rationale that since you have too few
personnel to adequately do the parts (nonsoftware) of the
job you're best prepared for, it doesn't make much sense to
push hard into software, where you know you have an extreme
shortage of skills.

The Electronics Institute of America (E.I.A.) estimates
the total USAF personnel need in 1986 at 8,800 people for
software support (which includes CAS personnel). The E.I.A.
estimates that this requirement will increase at an average
rate of 14% per year for the next three years. Given the
widely acknowledge observation that CAS software is
currently undermanned, the emphasis required to overcome the

current deficit and also keep up with an average 14% per



Dennis Blosser & Associates
Final Report
Page 104

year growth rate (assuming proportionality of CAS to other

software support personnel) would be very weighty. In fact,

given the current pressures to cut back government =
expenditures due to Gramm-Rudman, it seems very unlikely

that the necessary growth rate could be expected even if

there were not the initial deficit to surmount.

Although cut-backs due to Gramm-Rudman have not yet
seriously eroded the number of current CAS software
personnel, the preceding discussion makes it clear that for
this area, simply holding the status quo actually means
losing ground at a rapid rate. Thus, if the future effects
of Gramm-Rudman on other policies result in zero or slow .
growth of CAS software personnel, the current manpower
shortage will quickly worsen.

Another critical factor for CAS personnel skills is
verticality of training in software. Availability of more
and better trained personnel at the journeyman level will
not effectively impact USAF's needs for CAS support in
software acquisition unless there is a pervasive elevation
of the organizational visibility and importance of software.
This can come about only through training of all levels of
management, from the very top through supervision. The
concern and attention that management gives to the various
functional areas of an organization affects the degree to
which people involve themselves in that work, and how

effectively they do that work, independent of their .



Dennis Blosser & Associates

Final Report

Page 105

training. Management at all levels can give the appropriate

type and degree of emphasis to software only with sufficient
training.

In closing, some comments should be made regarding the
current status of software training in Engineering and
Quality Assurance. As stated above, Quality Assurance has a
powerful base for their journeyman training program in their
system of KSAs. This is especially important since hiring
in this area is based on the assumption that incoming
personnel with general or limited expertise will be hired
and then continuously assessed and trained to expand and
deepen their capabilities. Currently, software is a top
priority for journeyman training. The big catch is funding.
In prior years, this training program was well-funded and
delivered many hours of specifically targeted training for
its journeymen. However, for the last three years, funds
allocated for this training have been cut so low that they
represent a virtual zero. So here is a program geared by
need, premise, and capability that is severely impaired by
recent lack of funding. (Quality Assurance also operates
three-year training intern programs which are not considered
in this discussion which is targeted to journeyman
capabilities.)

Lack of funds is also a currently critical factor for
training in Engineering. In Engineering, the hiring premise

differs from Quality Assurance in that the incoming employee



Dennis Blosser & Associates
Final Report
Page 106

is a professional engineer by virtue of training and
experience. However, CAS engineers, unlike civilian
engineers, are expected to become generalists and grow to
operate effectively in more areas than the specialty of
their training or prior experience. MCCR personnel at
HQ/AFCMD are well aware that training engineers from other
areas in software is a necessary source for developing
manpower capability in this area. Although their training
program is not developed to the level of specificity and
delivery capability of the current Quality Assurance
program, Engineering aggressively studies their needs for
training. Currently, lack of funds have prevented them from
mounting a systematic program. Currently, most of their
training is provided by HQ staff or administered by them via

circulation of training videotapes to the AFPROs.




Dennis Blosser & Associates
Final Report
Page 107

8.0 RECOMMENDATIONS REGARDING POLICY

The fourth requirement for this phase of the study was
to recommend policy changes that would provide clear and
concise functional tasking for MCCR acquisition. This
corresponds to Task 4.3.4 of the SOW for the study.

The problems and limitations involved in attempting to
produce completely clear and concise separation of
functional tasks for SPO and CAS have been discussed in
Chapter 6.0 of this report. To reiterate, as appealing as
complete separation of function may appear from a purely
administrative viewpoint, oversimplification threatens the
functional effectiveness of the complex process of software
acquisition.

Thus, the task relations specified in Table Five are
designated as recommendations for policy, and it is
recommended that policy should be altered to enforce the
relationships of Table Five. This contractor is aware that
some of the recommendations following Table Five and many of
the relationships shown in Table Five already exist in
written policy as "suggested," "where appropriate" (or
similar phrases) or are even required (e.g., AFSCR-800-42).
However, interviews conducted in this study show that in
spite of guidance or requirements of written policy, in
practice, there is insufficient involvement of CAS
capabilities in the development of RFPs and contracts and

too little early involvement of CAS personnel in formal



Dennis Blosser & Associates
Final Report
Page 108
reviews and audits to fully utilize and support their
potential.

Therefore, policy should be rewritten to require and
enforce CAS involvement as shown in Table Five and discussed
in Chapter 6.0 of this report.

The SOW for this study requests changes be recommended
"to DOD policy, including the Federal Acquisition Regulation
(FAR) , the DOD FAR Supplement (Sup), the Air Force FAR Sup,
and the AFSC FAR Sup...." Recommendations are made as
indicated above. However, they are tentative. The
contractor would deem it precipitous to institute such
sweeping changes in policy without further study.

Thus, it is further recommended that policy
requirements and enforcements such as those recommended
above be tested on several projects, and the results
evaluated prior to instituting more widespread or higher

level changes in policy.




Dennis Blosser & Associates
Final Report
Page 109

9.0 ANCILILARY RECOMMENDATIONS

As in any study, there was, of course, more information

observed than is strictly relevant to the focal issues.

Some additional recommendations (or perhaps substitute

"suggestions" for "recommendations," if preferable) are

included here.

There are many interesting findings, but the most

salient for additional recommendations are informally:

(a)

(b)

(c)

There are some significant overlaps of function in
SPO and AFCMD activities for the acquisition of
MCCR software. However, these appear to be well-
noted by the individuals involved in actual
operations.

The primary formal instrument for coordination of
activities and responsibilities between the SPO
and AFCMD for a given contractor operation is
usually referred to as the MOA (memorandum of
agreement). This instrument is stipulated by
policy; but it is admirably flexible. In most

cases, however, it is reported as minimally

functional.

Generally, SPO personnel involved in software
activities are spread very thin, feel very
overloaded and believe that AFCMD personnel
contribute little or nothing to MCCR software

acquisition.



Dennis Blosser & Associates
Final Report
Page 110

(d) Generally, AFCMD personnel believe their
capabilities and contributions to MCCR software
acquisition are ignored/under-utilized by SPOs.

(e) There are a few, but notable exceptions to (c) and
(d) above, which point the way to positive
recommendations.

(f) There is a lack of sufficiently trained and
experienced personnel in both SPOs and AFCMD to
handle the extremely rapidly growing requirements
of the MCCR software acquisition process.

Ancillary recommendations emerging from the findings of
this study offer the possibility (but not the guarantee) of
more effective operations by SPOs and AFCMD in MCCR software
acquisition. Such increased effectiveness could lead to
better cost and schedule control and the increased assurance
of receiving quality-controlled software products.

Unfortunately, the ancillary recommendations of this
study would require considerable commitment and yet address
only a segment of the larger and complex overall problem of
MCCR software acquisition.

The problem'of time pressure discussed in Section 5.1
pervades every aspect of MCCR software acquisition and also
affects the other two root problems of insufficient
trained/experienced personnel and under-utilization of
available capability in AFCMD. Specifically, when a work

force is under heavy time pressure, it is unlikely to find
<




Dennis Blosser & Associates
Final Report
Page 111
adequate time to identify training needs, develop training
plans, and find available time to release personnel for
training. Further, when an organization such as an SPO is
under heavy time pressure, it is not likely to find time to
develop or encourage uncontrolled critical input from an
outside organization such as AFCMD. Some of the likely
fundamental causes of time pressure, such as the
difficulties of accurately estimating the time/cost
parameters of software production scheduling and the
difficulties of planning and executing strategic weapons
development in a rapidly changing technology, are well
beyond the scope of this study.

However, there is a reciprocal relationship between the
time-pressure problem source and the other two fundamental
problems. That is, if means could be identified to enhance
the utilization of AFCMD software capability and also to
increase the skill levels of personnel involved in MCCR
software acquisition with minimal time requirements, these
two problem areas would be improved and would have the
potential to reduce at least some time pressure. Thus, the

following recommendations:

1. Service-Marketing Approach for AFCMD. In the majority
of cases where SPOs seem to make little use of AFCMD
capabilities, there is also a benign ignorance typified by

statements such as, "I don't know what they really do," or,



Dennis Blosser & Associates
Final Report

Page 112

"I suppose they could help us, but they report to ...." 1In
the case of AFCMD personnel, the typical attitude is, "We
could offer the SPOs a lot of information that would help
them and maybe lead to better software, but they're not
interested."”

This is particularly noteworthy in that the policy for
both organizations specifically acknowledges benefits of
AFCMD expertise for SPO operations, and MOAs are prepared to
specify and assure the ways the organizations will recognize
and support each other in individual projects.

In the apparent minority of cases where SPOs and AFCMD

organizations have productive, effective relationships, the

situation is characterized by the following key elements:

(a) A relationship was established by initiative from
AFCMD.

(b) The major thrust of this initiative came from a
high-ranking (e.g., EP division chief) in an AFCMD
in-plant organization.

(c) The effort was persuasive in nature, based on how
AFCMD can benefit the SPO and how as a team AFCMD
and SPO can influence the contractor to produce
better software.

(d) The effort was continued over a period of time

(i.e., not a one or two presentation information

offering, for example). .




Dennis Blosser & Associates
Final Report
Page 113

Observation of these factors led to the following

recommendation of what is being termed here a "service-

marketing approach" for AFCMD in MCCR software acquisition.

The main

increase

features

(a)

(b)

(c)

(d)

(e)

(£)

(9)
(h)

objective of this recommended approach is to
SPO utilization of AFCMD capabilities. The basic

of this recommendation are as follows:

Specify exactly what services AFCMD wishes to
market (in general) to SPOs.

Determine specifically what actions by an SPO do/
de not constitute acceptance of each possible
component of the service product.

Determine specifically what benefits each service
product offers SPO and under what conditions.
Determine specifically who in SPO or related
organizations makes the decision, and when, to
accept AFCMD service products or not.

Set specific goals for level of acceptance of
service products.

Set specific goals for activities to obtain
acceptance of service products.

Evaluate and adjust (e) and (f) on experience.
The activities of (f) constitute persuasive,
repeated, timely demonstrations to decision makers

which:



Dennis Blosser & Associates
Final Report
Page 114
(1) clearly and specifically show benefits to SPOs
and USAF.
(2) include a mechanism for commitment.
(i) These activities need to be continuous and long
term in duration.
(J) A component of public relations should also be
developed, along with seeking support from a wide

and vertical constituency.

2. Streamlined training. In an age of rapid technological

turnover (especially true in the software area) and with the
personnel turnover and reassignment that is prevalent in
government organizations, streamlining of training is very
important. The government has courses available in software
acquisition management. Although these could no doubt be
improved, they appear to offer an adequate initial basis of
training in the area. However, an observation of this study
is that relatively few have been able to take these courses.
Currently these courses are taught primarily at training
centers. Perhaps less lengthy, videotaped, or otherwise
mediated courses could be developed which could be
disseminated more widely and used more time effectively.

As a follow-up to the basic or foundational training,
it is recommended that all more advanced training be
comprised in a computerized dynamic data base. This data

base could utilize an artificial intelligence language such




Dennis Blosser & Associates
Final Report
Page 115
as PROLOG. Persons needing training beyond the basics of
software acquisition management could simply query this data
base. The data base could be continuously updated by
experts from within AFCMD and external to AFCMD. This
recommendation reduces the training requirements to two

elements:

(1) Basic software acquisition management.
(2) How to utilize the training data base for advanced

training and updating.

The contractor is aware that other proposals and
efforts have been made in AFCMD that have been associated
with the idea of "marketing." It should be noted that the
approach suggested here is very specific and goal oriented
and includes, but is not centered around, an image-promotion
approach. Image promotion is useful and can be effective up
to a point. However, it is difficult or impossible to gauge
the effectiveness of such a program and thus to effectively
modify it or make other decisions. The program outlined
here supports direct evaluation and decision making.

Assumedly, leadership and direction for a service-
marketing effort would come from Headquarters, AFCMD. The
main thrust for effectiveness, though, has to come from the

in-plant AFCMD organizations. In the final analysis it is



Dennis Blosser & Associates
Final Report

Page 116

the perceived capability of these organizations that SPOs
"buy" or not.

A major question for t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>